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Silent speech recognition (SSR) allows users to speak to the device without making a sound, avoiding being overheard or
disturbing others. Compared to the video-based approach, wireless signal-based SSR can work when the user is wearing a
mask and has fewer privacy concerns. However, previous wireless-based systems are still far from well-studied, e.g. they are
only evaluated in corpus with highly limited size, making them only feasible for interaction with dozens of deterministic
commands. In this paper, we present mSilent, a millimeter-wave (mmWave) based SSR system that can work in the general
corpus containing thousands of daily conversation sentences. With the strong recognition capability, mSilent not only
supports the more complex interaction with assistants, but also enables more general applications in daily life such as
communication and input. To extract fine-grained articulatory features, we build a signal processing pipeline that uses a
clustering-selection algorithm to separate articulatory gestures and generates a multi-scale detrended spectrogram (MSDS).
To handle the complexity of the general corpus, we design an end-to-end deep neural network that consists of a multi-branch
convolutional front-end and a Transformer-based sequence-to-sequence back-end. We collect a general corpus dataset of
1,000 daily conversation sentences that contains 21K samples of bi-modality data (mmWave and video). Our evaluation shows
that mSilent achieves a 9.5% average word error rate (WER) at a distance of 1.5m, which is comparable to the performance of
the state-of-the-art video-based approach. We also explore deploying mSilent in two typical scenarios of text entry and in-car
assistant, and the less than 6% average WER demonstrates the potential of mSilent in general daily applications.
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1 INTRODUCTION
Automatic speech recognition (ASR) enables users to use natural language, which has strong expressive power
and low learning cost, to interact with electronic devices. Moreover, ASR provides a contactless alternative to
keypads to protect users from touching public devices during the pandemic of COVID-19. Also, in-car ASR can
help drivers perform interaction tasks, e.g. set the navigation destination, without detracting their attention.
Therefore, ASR has been widely used in daily tasks, such as communication, input, and voice assistants. However,
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Fig. 1. Example Application Scenario of mSilent. The user wearing a mask can contactless input complex sensitive information
to a public device.

voice-based ASR requires the user to speak loudly during the interaction. In scenarios such as in a conference
room or museum, voice-based ASR may disturb nearby people and the interaction can be easily interfered with by
noises. Voice-based ASR also raises privacy concerns as the interaction could be overheard by others, especially
when inputting sensitive information in public.

Silent Speech Recognition (SSR) recognizes speech based on articulatory gestures such as the movement of
the tongue and lips, allowing the user to speak to devices without making a sound. Recent work [34] shows
that people perceive silent speech as more socially acceptable than voiced speech, and are willing to tolerate
more errors in exchange for privacy. Computer vision is a promising solution for contactless SSR. With the
recent advancements in deep learning, the performance of video-based lip reading has been boosted [1, 31, 36],
and can recognize speech in a large corpus like BBC speech. However, the fine-grained acquisition of faces for
video-based sensing introduces new privacy concerns [5]. In addition, it cannot work in dimly lit scenarios or
when the user is wearing a mask.

In recent years, some pioneering work explores SSR using wireless signals, such as Wi-Fi [52] and ultra-
sound [59]. Wireless signals can propagate through obstructions, such as the mask, and the coarse-grained
sensing features reduce privacy concerns [5]. Thus, the wireless-based solution becomes a promising and fa-
vorable approach for recognizing silent speech. However, due to the limited resolution of wireless signals and
the insufficient capability of recognition models, previous wireless-based systems only work in a very limited
corpus. For example, the state-of-the-art ultrasound SSR [59] can only recognize 70 manually designed command
sentences. Such a limited capability restricts its application to a similar scope as hand gesture recognition,
which only supports simple deterministic commands. In addition, ultrasound-based SSR can only work within
a short range (< 20 cm), which requires the user to hold the device by hand, further limiting the scope of its
application. As a promising sensing technology, mmWave has a shorter wavelength and longer sensing range
than ultrasound, so the mmWave-based systems can sense small human movements such as heartbeats [14] and
vocal vibrations [51]. Furthermore, with the development of millimeter-wave (mmWave) communication and
mmWave radars, the cost of mmWave transceivers is reducing and they are deployed in an increasing number of
commercial devices [19, 29], including mobile phones[12], cars, and laptops. These features of mmWave lead to
new opportunities for contactless SSR.
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In this paper, we propose mSilent, a system that uses commercial off-the-shelf (COTS) mmWave radar with a
novel fine-grained model combining signal processing with deep learning to recognize silent speech in the general
corpus. With the fine-grained sensing capability, mSilent recognizes not only dozens of predefined commands
but also thousands of general conversation sentences, such as “How long does it take you to drive home?” or
“Please give me your name and address so I can send an ambulance.” In addition, mSilent is hands-free and has a
recognition range of more than one meter.

mSilent unleashes the representation power of silent speech recognition and enables new application scenarios,
such as in-car assistants, input, and communication:

• Talking with voice assistants would be a convenient interaction method in driving or domestic scenarios,
and SSR could improve the user experience. For example, when driving at night with passengers talking
loudly, the driver can still set the navigation destination with a noise-proof SSR and maintain the operation
of the steering wheel at the same time. Users can control the smart devices or order goods on Amazon
Echo without disturbing sleeping children in the bedroom. However, the small corpus used in previous
wireless works will make this scenario into a one-way order-giving experience with limited and fixed
types of commands. Our case study in the in-car scenario with 500 real interaction sentences exhibits that
mSilent can improve this to a real interaction experience between users and their smart voice assistants.

• On top of that, general communication with SSR can be more desirable and challenging. During the
pandemic, people tend to wear masks and avoid direct contact with devices in the public. With mSilent,
the user wearing a mask can enter sensitive information or personal messages into a public device, e.g.
gifts delivery service machine, without contacting the surface of the device, as illustrated in Fig. 1. mSilent
can also help users, who are unable to type or lose their speaking abilities to communicate with others.
Furthermore, users can still use silent speech to send messages comfortably and with fewer privacy
concerns [5] in noisy conference rooms or museums. These scenarios require the recognition capability
to be even higher to support the general corpus with no domain restrictions. Our evaluations in the
1,000-sentence general conversation corpus and the case study of text entry show that mSilent is not only
suitable for complex interaction with voice assistants, but also well capable of general communication and
input scenarios.

With all these desirable applications being said, mSilent still faces three core technical challenges to enable
SSR in the general corpus.

(1) How to separate articulatory gestures from multi-path reflections? The mmWave radar has a long
sensing range, which eliminates the necessity for the user to touch the device. However, the long sensing range
also introduces severe multi-path effects that overwhelm articulatory gestures with irrelevant movements and
noise. To address this challenge, we design a clustering-selection algorithm based on our observation that we can
first use coarse localization to detect the human body and then use fine search for the articulatory gestures based
on the heuristic that articulatory gestures mostly appear at the top of the body.

(2) How to extract fine-grained articulatory features from mmWave signals with noise? Recognizing
silent speech in the general corpus requires a large amount of information to eliminate uncertainty. However,
extracting fine-grained articulatory features frommmWave signals is difficult, because the duration of articulatory
gesture is highly variable [58] and unconscious head movements [15] introduce low-frequency noise. To address
this challenge, we design a multi-scale detrended spectrogram (MSDS), which removes low-frequency noise by
segmented linear detrending. We perform short-time Fourier transforms (STFT) at multiple scales to extract
articulatory gestures with different movement patterns.

(3) How to recognize silent speech in the general corpus by articulatory features? The general corpus
contains a large number of sentences with highly diversified lengths, domains, and syntax, making the task
challenging. Unlike video-based approaches that can benefit from computer vision tasks, there is no general
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Table 1. Comparing mSilent with existing SSR systems.

System HaMa
et al.

Silent
Speller

Ear
Command

Wi
Hear

Echo
Whisper

Sound
Lip

mSilent
(Ours)

Technology Video In-mouth Earphone Wi-Fi Ultrasound Ultrasound mmWave
Corpus Size >100k 1164 25 25 45 70 1000

Sentence-level Yes No Yes No No Yes Yes
For HCI No Yes Yes Yes Yes Yes Yes

Contactless Yes No No Yes Yes Yes Yes
Wearing Mask No Yes Yes Yes Yes Yes Yes
Hand-free Yes Yes Yes Yes No No Yes
Error Rate 39.1% 3% 12.33% 9% 8.33% 7.1% 9.5%

model that can be applied to mmWave features. To address this challenge, we design a novel end-to-end deep
neural network (DNN) with a convolutional front-end and a sequential back-end. We further design a two-stage
user discriminator to enable user-adaptive learning on sequential tasks.

To evaluate the sensing capability of mSilent, we design a general corpus that consists of 1,000 daily conversation
sentences. We collect the dataset with two sensing modalities of mmWave and video at the same time. We collect
a total of 21,404 samples from 10 users. To our best knowledge, it is the first general corpus silent speech
dataset with mmWave and video bi-modality. The dataset allows us to validate the performance of mSilent in the
general conversation scenarios and offers the possibility of exploring multi-modal interaction in the future. Our
experimental results show that the average word error rate (WER) of mSilent is only 9.5% at a distance of 1.5
meters, which is comparable to the WER of the state-of-the-art video-based system at 7.7%. To further evaluate
the performance of mSilent in the real life, we explore deploying mSilent in two typical scenarios: in-car assistant
and text entry. The results show that mSilent achieves only 4.3% and 5.1% average WER in the real scenarios with
task-specific corpus.
To the best of our knowledge, mSilent is the first general corpus SSR system based on wireless signals that

achieve comparable performance to state-of-the-art video-based work. We make the following contributions:
• We present the first signal processing pipeline to extract articulatory features from mmWave signals.
Specifically, we design a clustering-selection algorithm to separate articulatory gestures and a multi-scale
detrended spectrogram to extract fine-grained features.

• We design a novel end-to-end deep neural network to recognize silent speech in the general corpus,
which consists of a multi-branch convolutional front-end and a Transformer-based sequence-to-sequence
back-end. We also explore user-adaptive learning on sequential tasks.

• We perform extensive evaluations in a general conversation corpus of 1,000 sentences, verifying the strong
sensing capability of mSilent. We further explore deploying mSilent in two typical scenarios(in-car assistant
and text entry), showing the promising applications of mSilent in daily life.

2 RELATED WORK
In this section, we present the existing SSR systems and mmWave-based sensing. Table 1 shows the overall
comparison between mSilent and other SSR systems.

2.1 Wearable Device-based SSR
Specially designed wearable devices, such as EEG [11], EMG [50], and non-audible murmur microphone [40],
can be used to recognize silent speech. SilentSpeller [25] uses in-mouth electropalatography (EPG) to recognize
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1,164 words (sliced from 500 sentences) in MacKenzie-Soukoref corpus [44]. These sensors are highly capable of
sensing articulatory gestures, making it possible to recognize them in a large corpus using a lightweight model.
However, these specially designed devices are only available in clinics or laboratories and require special wear,
thus not suitable for daily-life applications. There are systems that use pervasive sensors, such as magnet [38] and
RFID [53], to perform SSR. SpeeChin [60] uses an infrared necklace to recognize 54 commands. EarCommand [20]
uses earphones to recognize 32 word-level commands and 25 sentence-level commands. These device-based
sensors still need to be actively worn by users and cannot be used for contact-less recognition.

2.2 Video-based Lip Reading and SSR
With the advance in computer vision, video-based lip reading has become an important research area recently.
Video-based lip reading systems usually are trained on voiced speech videos, but can easily be deployed as
powerful device-free SSR. Early work is commonly evaluated on a controlled corpus dataset called GRID [7].
The sentences in GRID have fixed lengths and are generated from 51 words with a fixed pattern. LipNet [2]
achieves sentence-level recognition on GRID using end-to-end deep learning. WAS [43] first explores the direction
of general corpus recognition, collecting a new dataset called LRS from BBC videos, where sentences do not
have any topic, word, or length constraints. WAS uses the Seq2Seq structure to achieve a 3.0% WER on GRID,
but the WER in LRS is 50.2%. This huge performance gap shows the difference between the difficulty of SSR
in the general and controlled corpus. With the fast advance of deep learning, the performance of video-based
speech recognition has been boosted by emerging neural models. Ma et al. [31] use Conformer [13] to achieve
the state-of-the-art performance in LRS2 [43] dataset without extra training data. AV-Hubert [41] proposes a
self-supervised representation learning framework, which can take advantage of the massive unlabeled video
to boost performance. However these works are not designed for human-computer interaction (HCI), and the
corpus from BBC Video is far from daily life. Unlike these works, Lip-Interact [45] is specially designed for silent
speech interaction in smartphones and is evaluated on 20 commands. The video-based SSR can only work in
good lighting conditions and without wearing masks. Furthermore, the requirements of capturing fine-grained
face images also pose the risk of privacy leakage, making it unsuitable in scenarios such as bedrooms [5].

2.3 Wireless Signal-based SSR
Wireless signal-based solutions have become a promising direction for SSR, since they can work while the user is
wearing a mask and reduce the risk of privacy leakage [5]. WiHear [52] uses Wi-Fi channel state information
(CSI) to recognize 33 different words, furthermore, the low resolution of the Wi-Fi signal prevents more fine-
grained recognition. To achieve better resolution, recent works use ultrasound to capture articulatory gestures.
Endophasia [61] recognizes 20 word-level commands and uses transfer learning strategies to adapt the model
for new users. EchoWhisper [10] uses dual microphones to recognize 45 words selected from the conversation
section of the English listening test. To our best knowledge, SoundLip [59] is the only sentence-level wireless
SSR, whose corpus contains only 70 manually designed commands from 4 domains. Compared to existing works,
mSilent is the only wireless system that can perform SSR in the general corpus with thousands of complex
sentences, enabling more general applications in daily life. In addition, the ultrasound-based work can only work
at a distance of less than 20 cm, while mSilent can work at a distance of more than 1 m.

2.4 mmWave-based Sensing
mmWave has higher frequencies and larger bandwidths than other wireless signals, so it becomes an important
method for sensing human activities in recent years. Cao et al. [5] use the privacy preservation feature of mmWave
to do re-identification in the camera-restricted regions. mmASL [39] uses a custom antenna array to recognize
50 American Sign Language (ASL) signs. RF-SCG [14] achieves contactless seismocardiogram (SCG) recording

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 39. Publication date: March 2023.



39:6 • Zeng et al.

End-to-End DNN

Transformer
Encoder

Transformer 
Decoder

“I’m speaking silently in the general corpus”

User 
Discriminator

Back-end Front-end

mmWave
Radar

Data Collection

“I’m speaking silently 
in the general corpus”

General 
Corpus Clustering-

Selection
Algorithm 

Multi-Scale 
Detrended

Spectrogram

Data 
Augmentation

Signal Processing

>1m

Fig. 2. System overview of mSilent.

by COTS radar. There are some systems that sense the vibrations of the vocal fold. WaveEar [57] first exploits
24GHz radar to restore the voice in noisy scenarios, and the recent work Wavesdropper [51] can recognize 57
words through the wall. mmSpy [4] uses both 77GHz and 60GHz mmWave radar to spy the phone call by sensing
the vibrations of an earpiece. For small non-radial movements, such as two-finger gestures, recent works [54]
can only recognize 30 gestures at a distance of 3 cm. Li et al. [55] shows that articulatory gestures cause signal
change at a distance of 5 cm from the mouth, which is the only short-range feasibility experiment of sensing
silent speech. Compared to these works, mSilent aims at recognizing silent speech in the general corpus through
articulatory gestures at a distance of more than 1 m. Therefore, mSilent has to address the challenges of separating
the subtle articulatory gestures from surrounding noises and extracting fine-grained articulatory features from
the mmWave signal.

3 SYSTEM OVERVIEW
mSilent uses a hybrid architecture that combines signal processing with deep learning as shown in Fig. 2. First,
mSilent uses COTS mmWave radar to collect general corpus silent speech at a distance of more than one meter,
and the raw signals are converted to range-angle maps. To separate the subtle articulatory gestures frommultipath
reflections, we use the clustering-selection algorithm at the beginning of the pipeline to separate the articulatory
gestures at a specific angle/distance. The separated signal is then transformed into the multi-scale detrended
spectrogram (MSDS), which eliminates unconscious head movements and extracts the fine-grained articulatory
features along the time dimension. To increase diversity, we design multiple data augmentation methods for the
training process of the deep neural network (DNN). After the signal processing pipeline, we use a specifically
designed end-to-end DNN to recognize silent speech in the general corpus. The front-end of the DNN is a
multi-branch convolutional network, extracting high-level features from the MSDS and embedding it into a
gesture sequence. The back-end is a Transformer-based sequence-to-sequence network, extracting contextual
information from the gesture sequence and translating it into text outputs. In addition, we use a two-branch user
discriminator to enable user-adaptive learning on sequential tasks. The overall system performance is evaluated
in a general corpus dataset of 1,000 different sentences through the widely used metric of word error rate.
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4 SIGNAL PROCESSING DESIGN
In this Section, we present the signal processing pipeline of mSilent, including the clustering-selection algorithm
to separate articulatory gestures from multi-path reflections, the multi-scale detrended spectrogram to extract
fine-grained features, and multiple data augmentation methods to increase data diversity.

4.1 mmWave Signal Capture
Most COTS mmWave radars transmit frequency-modulated continuous-wave (FMCW) signal with the trans-
mitting antenna array and receive the reflected signals with the receiving antenna array [18]. By applying Fast
Fourier Transform (FFT) on the FMCW chirps, the signals reflected from different distances are separated into
different range bins. In this work, we use the TI IWR1843 77 GHz radar as the sensor, which provides a bandwidth
of 4 GHz and a range resolution of 4 cm. For angle resolution, the mmWave radar has three transmit antennas and
four receiving antennas so that it can form an 8-antennas virtual line array in one direction, while the number of
antennas in the other direction of the virtual array is only 2. Therefore, we can only achieve a suitable angle
resolution in one direction. To capture the articulatory gestures, we choose to perform 1D beamforming along
the vertical direction, which separates the signals reflected from different height angles, such as the head and legs.
After standard mmWave signal processing, we get a 3D complex matrix𝑊 of shape 𝑇𝑤 × 𝑅𝑤 ×𝐴𝑤 , where 𝑇𝑤 is
the number of FMCW chirps (the time dimension), 𝑅𝑤 is the number of points in chirp (the range dimension),
𝐴𝑤 is the number of beamforming bins (the angle dimension). Along the time dimension, we repeat the chirp 240
times per second so that we can capture 240 frames of range-angle maps each second. Along the range dimension,
we set the number of ranges bins, 𝑅𝑤 , to 256, so that we can resolve objects within 10 meters with a granularity of
4cm. Along the angle dimension, we set the number of angle bins,𝐴𝑤 , to 12 so that we have an angular resolution
of 10 degrees along the height direction.

4.2 Clustering-Selection Algorithm
The long sensing range of mmWave radar eliminates the need for the user to hold the device, so the user can
operate the steering wheel or tap the keyboard while speaking. However, long-range sensing also introduces
severe multi-path effects as reflections from a wide range are mixed together. Unlike large-scale gestures [39] or
periodic heartbeats [14], the movements of articulatory gestures are both weak and complex, i.e. without specific
periodical patterns, which makes multi-path separation difficult. The subtle articulatory gestures can be easily
overwhelmed by irrelevant movements or noise from nearby people. In addition, existing deep learning-based
human posture tracking systems can only work in environments without obstructions such as tables, chairs, and
laptops [27]. To address this problem, we design a clustering-selection algorithm by intuition that the whole
body movement can be easily detected and articulatory gestures mostly appear at the top of the body. We choose
to use a lightweight design so that the algorithm has few parameters and does not need training. The algorithm
first clusters the peak reflection points in the dynamic spatial profile using non-maximal suppression and selects
the zone of articulatory gestures by the location prior. The details of the clustering-selection algorithm are shown
in Algorithm 1 and elaborated in the following.

4.2.1 Dynamic Spatial Profile. We first produce a dynamical spatial profile that highlights movements at different
ranges and angles. The maximum range and angle resolution of 4 cm and 10 degrees of our mmWave radar
are not sufficient to separate articulatory gestures very close to each other. Therefore, the signal related to the
articulatory gestures may reside in a small zone consisting of several channels and we need to select a such zone
to separate articulatory gestures from inferences. Since the articulatory gestures are complex and the signal is
non-stationary without periodicity, it is difficult to select the articulatory zone using time-domain algorithms such
as circular pattern matching [14]. Also, the small articulatory gestures cannot cause a big change in the range
map, so cannot be detected by the differentially removing clutter method. To select the articulatory zone, we first
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Fig. 3. Zoomed dynamic spatial profile of silent speech. Points "×" and "+" highlight the positions of hands and head,
respectively.

remove the reflections from static objects by applying a bandpass filter, since the Doppler frequency of the signal
represents the speed of reflector movements. We then perform amplitude accumulation along time-dimension to
obtain the dynamic spatial profile 𝐷 :

𝐷 (𝑟, 𝑎) =
∑︁
𝑡

|𝑊𝑓 (𝑡, 𝑟, 𝑎) |, (1)

where𝑊𝑓 is the filtered signal and 𝐷 is a real matrix of shape 𝑅𝑤 × 𝐴𝑤 . Each peak in the profile represents a
possible movement, so a trivial approach is to fine-tune the frequency band of the filter to maximize the energy of
articulatory gestures in the profile. However, the speed of articulatory gestures varies greatly for different syllables
and the speed range overlaps with that of other human movements [48], which makes filter design difficult.
Furthermore, even with the filter gain, the weak signal of articulatory gesture can still be easily overwhelmed by
other large-scale movements. Therefore, we choose to use a broadband filter to retain all possible movements
and leave the zone selection problem to the clustering-selection algorithm.

4.2.2 Clustering Movements by Non-Maximal Suppression. We use the non-maximal suppression (NMS) [33]
algorithm, which is widely used in target detection, to cluster the movements. As shown in Fig. 3, if there are
irrelevant gestures in the sensing range, such as the user typing, the subtle articulatory gestures are easily affected
by environmental noise. We solve the problem with the intuition that the whole human body can be easily
detected with clustering and articulatory gestures mostly appearing at the top of the body. Specifically, in each
step of the clustering, we select the point with maximum energy among unclustered points as the new cluster
center and gather all points in its neighborhood into this cluster. The size of the neighborhood 𝑅𝑛, 𝐴𝑛 can be
calculated based on the spatial resolution of the radar and the average size of the human body.
After clustering, each cluster represents the body movement of one human or the environmental noise, so

we calculate the sum of intra-cluster energy and remove clusters with significantly lower energy. The subtle
articulatory gestures are mixed and clustered with the large-scale irrelevant gestures in the same cluster, which
enhances the robustness to environmental noise. If there are still multiple clusters in the sensing range, we select
the cluster at the minimum distance as the target cluster, because the user is closer to radar than irrelevant people
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Algorithm 1: Clustering-Selection Algorithm
Input: The dynamic spatial profile 𝐷 , the neighborhood size 𝑅𝑛, 𝐴𝑛 , the threshold 𝛼 , the zone size 𝑅𝑧, 𝐴𝑧 .
Output: The selected articulatory zone 𝑍 of shape 𝑅𝑧 ×𝐴𝑧

1 Find all peaks 𝑃 = [(𝑟1, 𝑎1), (𝑟2, 𝑎2), · · · ] in 𝐷
2 Sort the peak list 𝑃 = [(𝑟𝑖 , 𝑎𝑖 ), · · · ] in descending order of energy 𝐷 (𝑟𝑖 , 𝑎𝑖 )
3 Initialize the cluster list 𝐶 , the clustered peak list 𝑃𝑃 , and the energy table 𝐸
4 for (𝑟, 𝑎) in 𝑃 do
5 if (𝑟, 𝑎) ∈ 𝑃𝑃 then
6 continue
7 end
8 Initialize the new cluster 𝑐
9 Put (𝑟, 𝑎) to 𝑃𝑃 and 𝑐

10 for (𝑟𝑟, 𝑎𝑎) in 𝑃 do
11 if (𝑟𝑟, 𝑎𝑎) ∈ 𝑃𝑃 then
12 continue
13 end
14 if |𝑟 − 𝑟𝑟 | ≤ 𝑅𝑛

2 and |𝑎 − 𝑎𝑎 | ≤ 𝐴𝑛

2 then
15 Put (𝑟𝑟, 𝑎𝑎) to 𝑃𝑃 and 𝑐
16 end
17 end
18 Set 𝐸 (𝑐) to the sum of energy

∑
(𝑟𝑖 ,𝑎𝑖 ) ∈𝑐 𝐷 (𝑟𝑖 , 𝑎𝑖 ).

19 Put 𝑐 to 𝐶
20 end
21 Find the maximum energy 𝑒𝑚𝑎𝑥 in 𝐸
22 Remove all clusters 𝑐𝑖 from 𝐶 where 𝐸 (𝑐𝑖 ) < 𝛼 · 𝑒𝑚𝑎𝑥

23 Find the cluster 𝑐 with the minimum average range ( 1
|𝑐 | ·

∑
(𝑟𝑖 ,𝑎𝑖 ) ∈𝑐 𝑟𝑖 ) in 𝐶

24 Sort the peak list 𝑐 = [(𝑟𝑖 , 𝑎𝑖 ), · · · ] in descending order of energy 𝐷 (𝑟𝑖 , 𝑎𝑖 )
25 Initialize the peak list 𝑐𝑐 .
26 for (𝑟, 𝑎) in 𝑐 do
27 Initialize the artifact flag 𝑏 = 0
28 for (𝑟𝑟, 𝑎𝑎) in 𝑐 do
29 if 𝑟𝑟 == 𝑟 then
30 𝑏 = 1
31 break
32 end
33 end
34 if 𝑏 == 0 then
35 Put (𝑟, 𝑎) to 𝑐𝑐
36 end
37 end
38 Find the zone center (𝑟𝑧, 𝑎𝑧) with the maximum height angle 𝑎𝑧 in 𝑐𝑐
39 return the articulatory zone 𝑍 of shape 𝑅𝑧 ×𝐴𝑧 centered in (𝑟𝑧, 𝑎𝑧)
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Fig. 4. Articulatory representations of silent speech "In fact."

in typical scenarios. In this way, we can perform a coarse-grained detection of the user body and then select
the articulatory zone using heuristics. In complex scenarios which have large-energy environment noise, the
clusters can be further selected by well-established human localization or tracking algorithms [56], but we leave
the study of these algorithms as future works.

4.2.3 Selecting Articulatory Zone. After obtaining the cluster of the user body, the next step is to distinguish the
articulatory gestures from irrelevant gestures. We use the location prior that the articulators are at the top of the
body in normal body postures. Theoretically, the angle resolution of the line array is not sufficient to distinguish
between the jaw and head at a distance of more than 1 m, so the point of articulatory gestures has the maximum
height angle in the cluster. However, due to the limited number of antennas available on the COTS radar, the
dynamic spatial profile has severe artifacts. As shown in Fig. 3, there are artifact peaks above the point with the
highest energy, which may interfere with the selection process. Therefore, we add more restrictions on the points
in the cluster, and only the points with the same distance are kept with the largest amplitude. After filtering, we
select the point with the maximal height in the cluster as the center of articulatory gestures. Finally, we select
the 𝑅𝑧 ×𝐴𝑧 zone in𝑊 as the multi-channel signal representing articulatory gestures, where 𝑅𝑧 and 𝐴𝑧 are the
numbers of spatial channels. The number of spatial channels is a trade-off between maximizing the articulatory
information and minimizing the environmental information, so the more noise sources and the closer distance,
the smaller zone should be. We set 𝑅𝑧 = 𝐴𝑧 = 3 based on experiments.

4.3 Multi-Scale Detrended Spectrogram
Recognizing silent speech in the general corpus requires fine-grained articulatory gesture information to eliminate
uncertainty. However, the duration of a single articulatory gesture is highly variable [58], while unconscious head
movements [15] introduce low-frequency noises. To address this problem, we design a multi-scale detrended
spectrogram (MSDS) to remove low-frequency noise by segmented linear detrending, and perform short-time
Fourier transforms (STFT) at multi-scale to extract fine-grained features.

4.3.1 Articulatory Representation. The spatial resolution of mmWave radar is not sufficient to separate the
articulatory gestures that are very close to each other, e.g., the movements of the mouth and throat. Therefore,
the key articulatory features can only be extracted from the time-dimensional variations in the mmWave signal.
Recent ultrasound-based work, such as UltraSE [46], believes the articulatory features can be mainly represented
by Doppler shifts and use STFT spectrograms as features. However, other systems, such as SoundLip [59], choose
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Fig. 5. Signal and segmented linear trend of silent speech “You say you like watching and playing baseball.” (Non-overlapping
imaginary part only.)

the amplitude-phase as the articulatory representation. After carefully studying the articulatory waveforms of
mmWave radar, we believe that the STFT spectrogram is the better representation of SSR. The reasons are as
follows:

First, the resolution of the spectrogram is sufficient for the silent speech recognition task. In mmWave sensing,
the amplitude-phase features are good at recovering fine radial movements such as heartbeats [14], because the
phase retains the fine-grained time and movement distance information. However, recovering the moving time
and distance of each gesture is not vital for the task of recognizing silent speech texts. As we can observe from
Fig. 4, the millimeter to centimeter scale movements of articulatory gestures [48] introduce large Doppler shifts
in mmWave, which provide detailed information of the gesture while removing the irrelevant jitters in phase and
amplitude.
Second, the spectrogram are easier to be interpreted than amplitude-phase features, therefore reducing the

learning difficulty of DNN. As we can observe in Fig. 4, it is hard to distinguish the syllables of the simple sentence
“In fact.” from the amplitude and phase waveform, while it is easy to discern the articulatory gestures from
the spectrogram. The articulatory gestures are complex and non-radial, making it difficult to extract features
from obscure amplitude-phase waveforms without a massive dataset. In contrast, the STFT spectrogram is a
well-designed feature extractor, which explicitly characterizes the speed distribution of the movements over time
and is more easily understood by the model. It is worth mentioning that the model can acquire more information
than the human eye in the spectrogram because the color mapping conceals part of the fine-grained fluctuations.

4.3.2 Segmented Linear Detrending. The head of the user moves unconsciously while speaking [15], and this
movement is superimposed on the articulatory gestures sensed by radar. Fig. 6(a) shows that the unconscious head
movements introduce high-intensity noises to the low-frequency band of the spectrogram. A common practice is
to directly cut out the low-frequency band to avoid the failure of normalization [46]. However, the speeds of
articulatory gestures are distributed over a wide range and also contain important low-frequency components [48].
Recognizing silent speech in the general corpus is a challenging task that requires a large number of fine-grained
features. Therefore, we need to design suitable denoising methods to remove the noise while preserving the
low-frequency components of articulatory gestures. Since the speed and intensity of irrelevant movements are
constantly changing, calculating the difference in the spectrogram [30] cannot remove the noise. Furthermore,
performing differential operations on the original signal will destroy the Doppler characteristics. In addition,
there is no fixed frequency distinction between articulatory gestures and unconscious head movement to guide
the design of a band-pass filter.

In mSilent, we choose to use segmented linear detrending to remove the noise. This is because we observe that
the unconscious head movement is slowly varying, so the trend of the introduced signal is smooth. In contrast,
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(d) At segment length 64.

Fig. 6. Spectrograms of silent speech “You say you like watching and playing baseball.” The multi-scale detrended spectrogram
consists of (b)(c)(d).

the duration of articulatory gesture is only 100 ∼ 700 ms [58], so the introduced signal trend is fast-changing and
non-smooth. Therefore, we can use segmented linear detrending to remove the noise. Specifically, for each STFT
segment 𝑠 with a length of 𝑙 , we fit the linear trend of it using the least square method and remove the trend
before performing FFT:

𝑘∗, 𝑏∗ = argmin
𝑘,𝑏

|𝑠 − [𝑘, 𝑏] 𝑃 |, (2)

𝑠′ = 𝑠 − [𝑘∗, 𝑏∗] 𝑃, (3)
where 𝑃2×𝑙 = [𝑝1, 𝑝2, · · · , 𝑝𝑙 ], 𝑝𝑖 = [𝑖, 1]𝑇 , 1 ≤ 𝑖 ≤ 𝑙 , [𝑘, 𝑏] is the complex coefficients, and |·| is the L2-norm. As
shown in Fig. 5, the trend related to the unconscious movements is approximately linear in a short segment,
so the least squares method can fit with it while ignoring the curved articulatory gestures. Fig. 6(c) shows the
spectrogram after segmented linear detrending, and the low-frequency components are clearly visible.

4.3.3 Multi-Scale STFT. There is a trade-off between time and frequency resolution in the spectrogram by
changing the segment length of the STFT. Empirically, the segment length should be similar to the duration of
articulatory gestures to capture their variation. However, the duration of articulatory gestures varies widely, from
100 ms to 700 ms [58]. When a smaller segment length is used to recognize a short-duration gesture, it will lose
information on long-duration gestures due to the low frequency resolution. Similarly, long segment length will
lose information about fast changes in short-duration gestures. Therefore, we perform STFT at multiple segment
lengths simultaneously to obtain the multi-scale spectrograms. To reduce the complexity of DNN models, we set
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the scale of segment lengths as powers of 2. As shown in Fig. 6, we first determine the center segment length as 32
(133 ms) based on experiments. We then add two additional segment lengths of 16 and 64 to obtain a spectrogram
biased toward time and frequency resolution, respectively.

We set the remaining parameters of STFT as follows: The average speed of the articulatory gestures is 40 ∼ 60
mm/s [48, 58], which introduces a Doppler shift of around 50 Hz in the 77 GHz mmWave. The maximal Doppler
frequency observed in our experiments is 100 Hz, so the sample rate (FMCW chirp rate) should be more than 200
Hz. We set the sample rate to 240 Hz and the interval of STFT to 8 to obtain a frame rate of 30 Hz, which retains
the fine-grained features and the compatibility with video-based solutions so that we may fuse the mmWave
with videos in the future. After the signal processing pipeline, we finally obtained the MSDS of [𝑆16, 𝑆32, 𝑆64] as
the feature of articulatory gestures, and the shape of each detrended spectrogram 𝑆𝐹 is 𝐹 × 𝑇 × 3 × 3, where
𝐹 ∈ {16, 32, 64} is the segment length, 𝑇 =

𝑇𝑤
8 is the number of segments.

4.4 Data Augmentation
Complex deep neural networks usually require a huge amount of samples for training. Unlike video-based systems
that can collect large-scale video samples available on the Internet, mmWave-based systems suffer from high data
acquisition costs. The number of sentences in the general corpus is significantly greater than in previous works,
so the available samples for each sentence spoken by the users are reduced, which exacerbates the data hunger.
Furthermore, the features of multi-dimensional MSDS have different physical meanings than videos so the widely
used image augmentation methods, such as crop and flip, cannot be directly applied to MSDS. To address this
problem, we design multiple data augmentation methods that consider the physical meanings of MSDS.

(1) Time warping: We randomly warp the signal in the time-domain by a factor of 𝛼 ∈ [0.9, 1.1], which
introduces variation in both time and frequency similar to SoundLip [59].

(2) Time masking: Inspired by the idea of time masking in speech recognition [35], we randomly mask 10%
of the MSDS in the time dimension, allowing the network to work properly while gesture missing.

(3) Scale jitter: Inspired by the idea of scale jitter [42] in compute vision, we multiply the MSDS by a random
factor 𝑎 ∈ [0.5, 1.5], then add a random bias 𝑏 ∈ [−0.5, 0.5] to it.

(4) Gaussian noise:We introduce Gaussian noise with a standard deviation of 0.05 to enhance the robustness.
(5) Frequency independent masking: As the spectrograms are complementary between different scales, we

design a more complex masking strategy in the frequency dimension. The frequency positions masked in
different spectrograms are independent, which guides the DNN to learn the complementary relationship
more efficiently. The different spectrograms characterize similar features, so the masking ratio should be
higher to avoid overfitting. Specifically, for each spectrogram, we independently mask 30% of the data in
the frequency dimension with a probability of 50%.

5 DNN DESIGN
The general corpus contains a large number of sentences with highly diversified lengths, domains, and syntax,
making the task challenging. Unlike video-based approaches that can benefit from computer vision tasks, there is
no existing wireless signal-based gesture recognition model that can handle such a complex task. To address
this problem, we design a novel deep neural network (DNN) by the intuition that we can first recognize what
articulatory gestures the MSDS represents, and then translate the gesture sequence to the final output texts. Since
translating spectrograms into a sequence of gestures/texts is a common task in sensing systems, we believe that
our DNN design can also benefit other similar applications.
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Fig. 7. Architecture of the multi-branch embedding front-end. Data flow notation: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 ×𝑇𝑖𝑚𝑒𝑠 ×𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 .

5.1 Multi-Branch Convolutional Front-end
After obtaining theMSDS, we first design a network to extract high-level short-time features, i.e., what articulatory
gestures the MSDS represents. The front-end design is inspired by the property of MSDS that the spectrograms
characterize the speed distribution of articulatory gestures over time, and the features in the different spectrograms
are complementary. The architecture of the front-end is shown in Fig. 7.

5.1.1 Residual Time-Frequency Convolution. We first consider a single network branch with a multi-channel
spectrogram of shape 𝐹 ×𝑇 × 3 × 3, where 𝐹 ∈ {16, 32, 64} is the number of frequency bins and 𝑇 is the number
of STFT segments. Due to the limitation of radar spatial resolution, the input spectrogram has only 3 × 3 spatial
channels, so we directly flatten it to 𝐹 ×𝑇 × 9. In the time-frequency plane, the spectrogram characterizes the
speed distribution of articulatory gestures over time. Therefore, we use time-frequency 2D convolution (Conv) as
the base component of the front-end, which is good at extracting high-level local features. Because the size of
dimension 𝐹 is at most 64 and the long-term dependence is handled by the back-end, we can use a small 3 × 3
kernel to achieve a sufficient receptive field. We further introduce the residual connection [16] between every two
Conv layers, which allows the gradient to flow directly through the network, making it easier for the network to
converge.

5.1.2 Frequency-Dimension Downsampling. The speed information of articulatory gestures is distributed in the
frequency-dimension, so we downsample in the frequency-dimension level by level to get a full view of each
articulatory gesture. In contrast, the front-end should only focus on short-term features, i.e., what articulatory
gesture the segment of MSDS represents, instead of long-term dependencies. Therefore, unlike the usual 2D
convolutional networks, we do not downsample in the time-dimension. Outputting a long sequence preserves
more fine-grained features along time-dimension, which is helpful for the complex task by leaving this to the
sequential back-end. The perception field is expanded after each downsampling, allowing for the extraction of
larger-scale features, so the number of channels is doubled to extract more features. Through this network, the
spectrogram of shape 𝐹 ×𝑇 × 9 is gradually transformed to a feature map of shape 4 ×𝑇 ×𝐶 , where 𝐶 = 256 is
the number of output channels. Finally, instead of using a fully connected (FC) layer, we use the global average
pooling (GAP) to aggregate the output to a gesture sequence 𝑋 of shape 𝑇 ×𝐶 , which reduces the number of
parameters in the network and prevent overfitting [28].
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Fig. 8. Architecture of the Transformer-based Seq2Seq back-end.

5.1.3 Fusing MSDS by Element-wise Addition. We design a multi-branch structure to handle multi-scale inputs,
where each branch processes the spectrograms of each scale independently in the early stage. Fusing features of
different modalities, such as video and audio, is often done by concatenating them in the channel dimension [1, 31],
so that the complex cross-modality interactions can be learned by subsequent networks. However, because the
MSDS is not multi-modal data and does not have complex interactions between scales, the concatenation scheme
leads to severe overfitting problems. Fortunately, the MSDS is highly interpretable, which allows us to manually
design the fusion scheme. The spectrograms of different scales represent the same speed distribution, but are
complementary in terms of resolution. Therefore, we fuse the multi-scale features by element-wise addition,
which is a concise and natural way to aggregate complementary data. The element-wise addition forces the same
channel of different branches to extract the same features, leading to the same feature space in multiple branches,
which is suitable for MSDS. In addition, with the element-wise addition and the residual connection, the gradient
can straightforwardly propagate back to the front-end, making the network easier to train. The spectrograms at
different scales are complementary in the local details and extracting detailed local information is done by the
early Conv layers. So, the fusion stage should be inserted as early as possible to preserve local features.

5.2 Transformer-based Seq2Seq Back-end
5.2.1 Transformer for Long Sequences. To retain more fine-grained features in time-dimension, the gesture
sequence 𝑋 has a 30 Hz element rate and may have hundreds of elements in length, so the back-end should
be able to handle very long-term dependencies. Traditional Recurrent Neural Networks (RNN), such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), require 𝑂 (𝑙) steps to process the entire sequence,
where 𝑙 is the length of the sequence. The long gradient propagation paths make it difficult to learn the long-
term dependencies [17]. Transformer [49] breaks the temporal serial structure of traditional RNN and uses the
multi-head attention (MHA) mechanism to extract contextual features. Each attention is calculated by scaled dot
production:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 , (4)

where 𝑄 , 𝐾 , and 𝑉 are projected from input sequences by Linear layers, and 𝑑𝑘 is the dimension of 𝐾 . Attention
handles the whole sequence with 𝑂 (1) complexity and has no problem learning long-term dependencies. After
MHA, Transformer uses a feed-forward network to map the sequences to a high-dimensional space to further
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Fig. 9. Data flow of the two-stage sequential discriminator.

enhance its expressive power. Therefore, we use the powerful Transformer to build the back-end, which is
expertise in extracting long-term dependencies.

5.2.2 Seq2Seq Structure. The sequence-to-sequence (Seq2Seq) structure contains two parts: encoder and decoder.
The encoder models the contextual information of gesture sequence 𝑋 by the self-attention, and transforms it
into a hidden sequence as one of the inputs of the decoder. The decoder is auto-correlated, i.e., accepts its last
output text 𝑌𝑙−1 = [𝑦1, · · · , 𝑦𝑙−1] as the other input at step 𝑙 . The decoder calculates the masked self-attention of
𝑌 to learn an internal language model in the corpus, which makes the Seq2Seq structure perform better [43]. The
decoder then models the correlations between the two inputs by cross-attention, and outputs the 𝑌𝑙 at step 𝑙 ,
until 𝑦𝑙 is the end-of-sentence (EOS) symbol.
Due to the large vocabulary size in the general corpus, we use the character as the basic symbol unit of the

output. We also introduce left-to-right alignment via the auxiliary CTC loss [23] to avoid the excessive flexibility
of the Transformer [31, 59]. The best size of back-end is correlated with the size of the corpus and dataset [21],
so we fine-tune it in our dataset and set it to 256-channels, 3-layers encoder, and 3-layers decoder. It is worth
mentioning that the structure of back-end is scalable, and can work in a larger corpus by simply increasing the
size.

5.3 Exploring User Adaptive Learning on Sequential Task
5.3.1 User Adaptive Learning. In daily conversation, users may speak more casually than giving commands to
the voice assistants. This leads to a high diversity across users since different speakers have different speech
speeds, different pause times, and different accents. Even if the pronunciations are the same, different users may
have different mouth shapes and tongue movements. Therefore, recognizing the silent speech of new users makes
the SSR task even more difficult. User-adaptive learning by gradient reversal [9] is a widely used method for
the classification task, guiding the DNN to learn user-independent features through a discriminator. Through
user-adaptive learning, the model can be transferred to new users using unsupervised calibration with unlabeled
data, or semi-supervised calibration with a small number of labeled data. However, there is no general approach to
applying user-adaptive learning to sequential tasks. We explore the extension of this approach to our sequential
tasks by designing a two-stage sequential discriminator.

5.3.2 Two-Stage Sequential Discriminator. In classification tasks like word-level SSR [37, 61], the DNN has
a heavyweight front-end for feature learning and a lightweight back-end (only one or two FC layers) for
classification, so the discriminator is usually inserted after the front-end to capture high-level user information
in features. However, in our sequential task, the powerful back-end is both for contextual feature learning and
sequential translating. If we insert the discriminator earlier, it cannot capture the high-level user information in
the context. Otherwise, when the discriminator is inserted later, the powerful back-end can translate the gestures
into text before it, just as the auxiliary CTC loss [23], even though this text may be wrong due to user diversity.
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Our solution is to divide the user diversity into two categories and design a two-stage sequential discriminator
to handle them separately, including an individual discriminator and a global discriminator. Fig. 8 shows the
position of the two-stage sequential discriminator in the DNN, and Fig. 9 shows its data flow. Each articulatory
gesture contains user diversity information, such as the different shapes of mouths and moving habits. The
individual discriminator processes the output from the front-end, a gesture sequence 𝑋 of shape 𝑇 ×𝐶 . Each
gesture vector 𝑥 in the sequence has a shape of 1 ×𝐶 and is independently passed through the feed-forward
network to ensure that no vector contains user diversity information. The output of the individual discriminator
has a shape of 𝑇 ×𝑈 , where 𝑈 is the number of users (including an unknown user). The global discriminator is
inserted after the penultimate layer of the encoder and handles user diversity in the context, such as differences
in speech rate and accent. The first part of the global discriminator is a Transformer Encoder, which can extract
the contextual diversity in sequence. Then, a GAP layer is used to pool the hidden sequence of shape 𝑇 ×𝐶 to a
vector of shape 1 ×𝐶 , and the pooled vector is fed into a feed-forward network for classification. The loss of the
adaptive learning component is as follows:

𝐿𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 =
1
𝑇

𝑇∑︁
𝑖=1

𝐿𝑖 + 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 , (5)

where𝑇 is the length of sequence, 𝐿𝑖 is the 𝑖𝑡ℎ loss of individual discriminator, 1 ≤ 𝑖 ≤ 𝑇 , and 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 is the loss of
global discriminator.
In summary, the DNN is trained in an end-to-end manner and the loss is as follows:

𝐿 = 𝐿𝑠𝑒𝑞2𝑠𝑒𝑞 + _1𝐿𝑐𝑡𝑐 + _2𝐿𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 , (6)

where 𝐿𝑠𝑒𝑞2𝑠𝑒𝑞 is the Seq2Seq loss, 𝐿𝑐𝑡𝑐 is the auxiliary CTC loss, 𝐿𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 is the user adaptive loss, _1 and _2 are
the weights of auxiliary loss. Since the auxiliary loss should be smaller than the main loss, the factors are less
than 0.5 in practice.

6 IMPLEMENTATION

6.1 Bimodal General Corpus Dataset
6.1.1 Corpus Design. To evaluate the performance of mSilent in the general conversation scenarios, we use
the conversation section of the English listening test as the corpus source, which is general, representative, and
widely used for evaluating communication skills. The pilot ultrasound SSR, EchoWhisper [10], also uses the
same corpus source, but only selects dozens of words from one conversation due to the insufficient recognition
capability. Instead of manually selecting, we automatically collect over 100k transcripts from multiple websites
containing the corpus source, slice them into sentences by punctuation, and randomly select 1,000 sentences to
form the corpus. The large corpus size with random sampling method ensures that the corpus does not contain
subjective bias and is sufficiently general for the daily conversations [3]. Tab. 2 shows ten example sentences in
the corpus, which are all common sentences of daily life, and vary in domains. As shown in Fig. 10, the most
common words in our corpus are general words in daily conversation. Fig. 11 shows the long-tail distribution of
sentence lengths in the corpus, which is as same as the natural language in real life.

6.1.2 Bimodal Data Collection. We develop a collecting tool, which can simultaneously collect the sensing data
from a mmWave radar and a web camera with synchronized timestamps. We collect the dataset in four different
scenarios, including one conference room, two pantry rooms, and one restaurant. There is at least one other
person and multiple static objects such as tables, chairs, and computers in these scenarios. We invite 10 volunteers
to participate in the collection, including 7 males and 3 females. The volunteers sit opposite to radar at a distance
of about 1.5m. Volunteers control the recording and sentence segmentation by pressing the start and stop buttons,
which introduces irrelevant hand movements from the user. Volunteers speak casually as they would in daily
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Fig. 10. Top 10 of the most common
words.
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Fig. 11. Distribution of sentence lengths.

Table 2. Examples of sentences.

We practice only one night a week.

Let me look at the map.

But i just can’t spare the time.

What is she wearing today?

We have got all kinds of mobile phone here.

I decided to make new legs for myself

Do any other people in your family use the bus service?

Anything else?

You say you like watching and playing baseball.

No smoking is allowed in the lift.

0 1 2 3 4 5 6 7
Time (Seconds)

1
2
3
4
5
6
7
8
9

10

Us
er

Fig. 12. Sample duration of different
users.

conversation, which may increase the diversity between users. As shown in Fig. 12, the sample duration of
different users varies greatly. For each volunteer, we only collect a random set of sentences that is half of the
corpus, i.e., 500 different sentences, to ensure the diversity of the dataset. Each volunteer speaks each sentence
four times in total, including 1 normal speech sample and 3 silent speech samples. In each session, we invite
a volunteer and randomly select a scenario to collect 500 ∼ 1000 samples. This means that the samples from
each volunteer are collected in 2 ∼ 4 sessions with random time and scenarios. We drop out the last user as the
unseen user, and randomly split the dataset above into the training set, validation set, and test set in the radio of
8:1:1. The random splitting is done by the built-in function of the Sklearn library and does not have any manual
restrictions.

6.1.3 Challenging Scenario Datasets. To evaluate the generalizability and capability of our system, we collect five
datasets in challenging scenarios, which are all not included in the training set. The five challenging scenarios
include: 1) a new room, which has a completely different layout from the previous rooms; 2) a noisy meeting
room, in which dozens of people are having a workshop, and the distance between the volunteer and the nearest
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person is about one meter; 3) in a car, where the volunteer sits in the driver’s seat and turns the steering wheel
while speaking; 4) the volunteer wears a mask; 5) in a large room, collected at different distances, angles, and
orientations.
We collect 21,404 samples in total. Compared to previous wireless signal-based work, our dataset has a

significant improvement in corpus complexity. We reduce the repetitions of each sentence to keep the similar
data size, which makes the SSR task more challenging. To the best of our knowledge, our dataset is the first
bi-modality and general corpus silent speech dataset, providing the possibility to fairly compare the performance
of mSilent with state-of-the-art video solutions and enabling future exploration for multi-modal systems.

6.2 Implementation Details
We use TI IWR1843 77GHz mmWave radar to transmit mmWave signals and the DCA1000EVM data acquisition
board to collect the raw signal data. The signal processing pipeline is implemented using Pytorch and Scipy, and
the DNN model is implemented by Pytorch Lightning. For the DNN model details, we choose to use ReLU as the
activation function, and batch-normalization and layer-normalization for the normalization layer of front-end
and back-end, respectively. The sizes of parameters for the DNN front-end and back-end are 1.3 M and 5.6 M,
respectively. For the training process, we use a batch size of 64 on each GPU and use Adam [26] with a 1e-4
learning rate as the optimizer. The remaining hyperparameters used in our experiments are as follows: 𝑅𝑛 = 25,
𝐴𝑛 = 6, 𝛼 = 0.05, _1 = 0.1; _2 = 0.1 in user adaptive learning, otherwise _2 = 0.

7 EVALUATION

7.1 Evaluation Setup
7.1.1 Baselines. We use the state-of-the-art SSR systems based on wireless signal and video as the baselines. To
our best knowledge, SoundLip [59] is the only work that explores wireless signal-based SSR at the sentence-level.
To compare with ultrasound-based SoundLip, we keep our cluster-selection algorithm since the selected multi-
channel signal has similar characteristics to the multi-frequency continuous wave signal in SoundLip. We further
use up-sampling schemes to increase the sampling rate to 480Hz to match the ultrasound signal of SoundLip.
To ensure model convergence for SoundLip, we use the same data augmentation strategies as mSilent, except
for frequency masking, as there is no frequency dimension in the amplitude-phase map for SoundLip. We also
reproduce state-of-the-art video-based SSR [31] systems in LRS2 dataset [43]. To improve the performance of the
video-based systems in small datasets, we additionally add color jitter as the data augmentation strategy. Because
the best size of the back-end is correlated with the size of corpus and dataset [21], we change the back-end size
to be the same (256-channels, 3-layers encoder, and 3-layers decoder) as mSilent for both baselines. We fine-tune
the remaining hyperparameters of both baselines to achieve the best performance. The training of mSilent and
baselines are run on a GPU server with four Nvidia RTX3070 GPUs, and totally takes over 10 days to raise the
best performance.

7.1.2 Metrics. We use the word error rate (WER) as the evaluation metric, which is widely used in continuous
speech recognition. WER measures the minimum number of operations to transform a predicted sentence into
the ground truth by inserting, deleting, and substituting words:

𝑊𝐸𝑅 =
𝐼 + 𝐷 + 𝑆

𝑁
, (7)

where 𝑁 is the number of words in the ground truth and 𝐼 , 𝐷 , and 𝑆 are the number of insertions, deletions, and
substitutions, respectively.
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7.2 Performance Comparison with Baselines
The performances of mSilent and baselines in the test set are shown in Fig. 13. The average WER of mSilent is
only 9.5%, which indicates that mSilent is capable to achieve accurate silent speech recognition in the general
scenarios of daily conversation. For voiced and silent speech, the WER of mSilent is 9.9% and 9.4%, respectively.
As a comparison, the WER of the video-based baseline is 7.7%, which is only marginally better than mSilent.
Compared to the baselines, mSilent achieves wireless-based general corpus silent speech recognition and offers
comparable performance with state-of-the-art video-based systems.
To our surprise, the best average WER achieved by SoundLip is 76.3%, which indicates the huge difficulty

gap between general daily conversation and its limited 70 commands. As presented in 4.3.1, we believe the
success of mSilent is due to the Doppler shift being the key feature in mmWave signals for SSR, which is the
inter-modality feature in SoundLip’s amplitude-phase map, and cannot be extracted with a fine granularity by
SoundLip’s heavyweight intra-modality CNN with only lightweight inter-modality CNN. To verify this, we
change the structure of SoundLip to lightweight intra-modality CNN with heavyweight inter-modality CNN,
and called it SoundLip++. The result shows that the SoundLip++ has 43.1% average WER, providing a side note
on our mechanism, and still has a big gap between our MSDS feature and front-end. These results also confirm
that, the strong capability of mSilent is not only because of the new sensing technology, but also because of our
carefully designed system.

7.3 Performance in New Environments
Fig. 14 shows the WER of mSilent in the challenging environments that are all not included in the training set.
The WER in the new room is only 9.8%, which is better than expected. This shows that mSilent is robust against
variations across environments and sessions. The WER in a noisy conference room is 18.8%, which shows that
the noise from irrelevant people has little effect on mSilent. We manually check the failure samples and confirm
that all the articulatory zones selected by the clustering-selection algorithm are in the right place. Therefore, the
small performance loss may be due to other people’s articulatory gestures leaking through the FFT. The WER
when the user turns the steering wheel is only 14.2%, which shows mSilent can work well with hand movements.
This also illustrates the potential for mSilent to be deployed in vehicle scenarios, especially when driving at
night. The WER when the user wears a mask is only 17.3%, showing that mSilent can work with masks, while
the video-based SSR stops working at all. The small performance loss of mSilent may be due to the noise from
the mask movements, which is unseen in the training set. Since these challenge scenarios are not included in
the training set, we believe that mSilent generalizes well, and can perform better after further training in such
scenarios.
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Fig. 16. Performance in different positions and orientations.

7.4 Performance of User Adaptive Learning
Fig. 15 shows the WER for the user who is not included in the training set. Without user-adaptive learning, both
mSilent and video-based SSR perform poorly for the new user with a WER higher than 60%. This shows that
there is a strong user diversity in daily communication, which is prevalent in both the video and wireless-based
silent speech datasets [37, 61]. With unsupervised adaptive learning, i.e., training with three unlabeled samples
of each sentence, the WER of mSilent reduces to 42.5%. The performance is further improved by semi-supervised
adaptive learning, i.e., training with one labeled sample and two unlabeled samples of each sentence, where
mSilent achieves a WER of 21.2%. Without adaptive learning components, the WER of mSilent trained by the
same amount of data is only 46.7%. The results show that the two-stage user discriminator successfully extended
user-adaptive learning to our sequential task. In the normal dataset, each user reads each sentence four times, so
the user adaptive learning reduces the amount of supervised data to 1/4. Because the transfer strategy in practical
scenarios is carefully studied in word-level SSR Endophasia [61], which can be applied directly to mSilent, we do
not present it.

7.5 Impact of Position and Orientation
There are three independent variables (range, angle, and orientation) in the spatial relationship between the user
and the radar. In every experiment, we change one variable and set others to the default value, which is the same
as in the training set: the user sits directly opposite to the radar (0° angle and 0° orientation) at a distance of 1.5
meters (1.5 m range). Fig. 16(a) shows the WER with different ranges from radar, and mSilent can achieve ≤ 20%
WER within a distance of 2.5m. The performance loss may due to the insufficient number of antennas for COTS
radar, which cannot separate silent speech at longer distances with a high signal-to-noise ratio. Fig. 16(b) shows
the WER with different horizontal angles from radar, and mSilent can achieve ≤ 20% WER in −30 ∼ 30 degrees.
In addition, mSilent can also work in up to ±60 degrees, which is beyond the ±30 degrees viewing angle of our
camera. Fig. 16(c) shows the WER of different orientations of the user, and mSilent can achieve ≤ 20%WER in
−15 ∼ 15 degrees. It is worth noting that the training set only contains samples at a distance of 1.5 meters and
directly opposite the radar, so mSilent may perform better in the future with a large-scale dataset.

7.6 Micro Benchmark
Since the only text is available as the ground truth, we use overall WER as the metric of all micro benchmarks.
As shown in Fig. 17, when replacing the element-wise addition to the widely used channel concatenation or
removing the data augmentation component, the system stops working at all and has a WER of more than 100%.
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This result indicates that element-wise addition is the right way to fuse complementary features, and our multiple
data augmentation strategies effectively increase the diversity of data. Fig. 18 shows the performance of mSilent
in complex scenarios after removing the clustering-selection algorithm. The zone selection scheme without the
clustering-selection algorithm uses a simple maximum amplitude strategy on the dynamic spatial profile. The
system performs poorly without the clustering-selection algorithm, especially for the noise room and in-car
scenarios. This is because the subtle articulatory gestures are easily overwhelmed by the movements of others
in the conference room or by hand movements when turning the steering wheel. Fig. 20 shows the impact of
different zone sizes used in articulatory zone selection. Since the range resolution is much higher than the height
resolution, we also include the 3 × 1 zone size as a valid zone size. The result shows that the 3 × 3 zone size is the
best trade-off between maximizing the articulatory information and minimizing the environmental information.
For the MSDS feature extraction, Fig. 22 shows that the multi-scale approach is better than the single-scale with
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Table 3. System Latency (ms)

Preprocessing Processing DNN Total
w/o GPU 38.9 12.6 292.7 344.2
w/ GPU 1.3 12.6 161.5 175.4

(a) In-car assistant. (b) Text Entry.

Fig. 23. Experiment scenarios of the case study. The radar is in the red box.

different STFT segment lengths, and the segmented linear detrending further improves the performance. Fig. 21
shows the performance of different Conv kernel sizes in front-end. The frequency-dimension 1D Conv is much
better than the time-dimension 1D Conv, which shows the necessity of extracting and aggregating features in
the frequency dimension. We can also observe that our time-frequency 2D Conv performs better than both 1D
Conv, and a small kernel size is sufficient. As shown in Fig. 19, after replacing the Transformer with SoundLip’s
GRU with the attention scheme, the WER grows to 21%. Since this WER is still much lower than SoundLip++, the
result also confirms that the SoundLip’s performance gap is mainly due to the feature mechanism in the signal,
not the back-end. The WER of LSTM is slightly lower than GRU, which is consistent with the fact that LSTM
usually outperforms GRU on complex tasks. Transformer works better than these RNN structures because both
the input and output sequences are long sequences in our task.

7.7 System Latency
To evaluate the performance and usability of mSilent in real life, we measure the system latency on a laptop with
AMD Ryzen 7 5800H CPU and Nvidia RTX3060 GPU. The inference of the DNN model is based on TorchScript.
We divide mSilent into three stages: Preprocessing (Section 4.1), Processing (Section 4.2 and Section 4.3), and
DNN (Section 5). The duration of input data is 5 seconds (1200 × 256 × 8), and the length of output text is 100
characters. As shown in Table 3, the system latency of mSilent is only 344 ms on CPU, and 175 ms on GPU. The
preprocessing stage consists of multiple rounds of FFT and beamforming operations, thus can be accelerated
by GPU. In the processing stage, both our Cluster-Selection Algorithm and Multi-Scale Detrended Spectrogram
are lightweight and fast. The latency of mSilent is mainly introduced by DNN. Because of the auto-correlated
decoder, the inference cannot be fully parallelized, and the GPU version is only slightly faster than the CPU
version.

8 CASE STUDY
To further evaluate the performance of mSilent in the real life, we explore deploying mSilent in two typical use
cases. Different from the experiments in 7.3, the system is trained independently by the dataset collected in the
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real environment with task-specific corpus. Same as the general corpus dataset, every sentence is read only four
times and the ratio of the training set, validate set and test set is 8:1:1.

8.1 In-car Assistant
As shown in Fig. 23(a), we deploy mSilent in the vehicle as a noisy-proof and non-disturbance in-car assistant.
The driver can talk with mSilent silently to control the in-car devices, such as setting the navigation destination,
while the passengers are sleeping/talking. Similar to the common dashcam, the radar is placed at the left of
the rearview mirror. We use the dataset collected from the real dialogue of drivers and assistants as the corpus
source [8], and randomly choose 500 sentences spoken by the driver to form the corpus. The corpus includes
calendar scheduling (Set an optometrist appointment for 3 pm on the 15th of this month with my aunt), weather
information retrieval (Could you tell me the weather forecast in Fresno on Saturday), and point-of-interest
navigation (Find a gas station that is not farther than 3 miles away), etc. Since the corpus is collected from
the real dialogue, the command sentences are much more complex and variable than the previous works like
SoundLip [59]. However, the domain of this corpus is focused on the in-car assistant, which is less challenging
than our general corpus with no domain restrictions. The experiment result shows that mSilent achieves 4.1%
average WER in the real in-car scenario. Compare to other SSR systems, the video-based SSR cannot work in
the night driving and introduce more privacy concerns. The previous wireless SSR systems suffer from low
recognition capability and cannot support complex interaction in the real large corpus.

8.2 Text Entry
As shown in Fig. 23(b), we deploy mSilent as a contact-less and hand-free text entry interface. In scenarios where
the voice-based ASR is improper, the user can still use mSilent to input general sentences to the device, such as
sending a message. We follow the in-mouth SSR SillentSpeller [25] to use the MacKenzie-Soukoref corpus [44],
which contains 500 common phases and is widely used for evaluating text entry technology. Compare to our
general corpus, the domain of this corpus is also general, but it only contains short phases with no more than 43
characters. mSilent achieves 5.3% average WER in the MacKenzie-Soukoref corpus at the distance of 1.5 m. For
the speed metric of text entry, the average Word per Minute (WPM) of mSilent is 129.6, which is similar to the
115 average WPM of SillentSpeller. The results show that mSilent is not only suitable for complex interaction
with voice assistants, but also well capable of general communication and input scenarios.

The results of the case study confirm the performance of mSilent in typical use cases. Since these task-specific
corpora contain domain or length restrictions, mSilent can achieve better performance in them. Therefore, with
the strong capability proven by the massive experiments in our challenging general corpus, we believe that
mSilent would perform well in more daily scenarios.

9 DISCUSSION
Limitation of Corpus: Video-based datasets can be generated from huge amounts of videos on the Internet,
such as BBC speech, so the corpus size of which can reach 100k [43]. This allows the video-based back-end to
learn a generalized language model that enables end-to-end recognition for unseen sentences [43]. However, due
to the limited number of 1,000 sentences in our corpus and the widely distributed language domain of the general
corpus[22], mSilent currently cannot precisely estimate the probabilities of the language model. Therefore, the
back-end will not consider an unseen sentence as a legitimate sentence in our corpus. However, our evaluations
show that mmWave exhibits a similar articulatory gesture sensing capability as videos. We believe that with
the progress in mmWave-based sensing, a larger mmWave-based dataset will emerge in the future. In that case,
mSilent could recognize unseen sentences in the same way as video-based methods with a large number of
training samples.
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Failure Cases: There are some scenarios mSilent cannot cover now. When the user is lying down, mSilent on
the roof may still work, but mSilent cannot work when the user raises hands above the head, because the head is
not at the top of the body. We can avoid this by guiding the posture of the user. mSilent also cannot work when
the head is moving fast, e.g., running, or head shaking, which is a common failure case for mmWave sensing.
Separating movements by contrastive learning [6] may be a solution, and we will exploit it in our future work.

Wake-up-word Detection and Multiple Users: Unlike audio-based systems, mmWave-based systems need
to first detect and localize the articulatory zone before detecting the wake-up word. The pre-processing steps
may incur a high computational cost and consume a considerable amount of energy. However, our lightweight
clustering-selection algorithm can pick out the possible channels of articulatory gestures. We can design specific
lightweight models to detect wake-up-word from a small number of channels, and this can draw on well-
established wake-up word detection models in speech recognition [47]. mSilent can also be extended to multiple
users with moderate modifications because our clustering-selection algorithm treats the human body as a whole
and we can detect multiple users given that they are separable by range/angles. We leave the multiple users
scenario as our future work.
77GHz mmWave Signal: Although mSilent works well when the user wears a mask, there may be a large

performance decay when the Line of Sight (LOS) path of the signal is blocked by an interfering user or wall. The
mmWave signal can propagate through the wall and may maintain the sensing capability [51], we will explore
the non-LOS scenarios in our future work. If there are multiple radars within a scene, they will interfere with
each other. Because a single mSilent only uses less than 10% of the time slot, we can deploy multiple radars
using time-division multiplexing with a synchronization mechanism. The 77GHz band is restricted to automotive
usage and cannot be used indoors in some countries. The 60GHz band is an alternate because their sensing
characteristics are similar [4], and our system can be migrated to COTS 60GHz radar, e.g., TI IWR6843, with small
changes.

Multimodal Interaction of mmWave and Video: In this work, we collect a dataset with both the mmWave
and the video modality. We design a mmWave-based SSR that achieves performance comparable with the video-
based SSR. Our dataset also offers the possibility of cross-modal interaction in the future, where the fusion of
mmWave and video may allow for accurate silent speech recognition in more complex scenarios and corpus.
Another possible way is using knowledge distillation [24] to transfer information from the video-based SSR
trained in a large-scale dataset, which may reduce the data hunger in mmWave. Bi-modal contrastive learning [32]
is also a possible self-supervised approach to extracting articulatory features.

10 CONCLUSION
We present mSilent, a COTS mmWave radar-based system that enables wireless signal-based silent speech
recognition in the general corpus. We propose a clustering-selection algorithm to separate articulatory gestures
and a multi-scale detrended spectrogram to extract fine-grained features. We design an end-to-end DNN to
handle the complexity of the general corpus, which includes a multi-branch convolutional front-end and a
Transformer-based Seq2Seq back-end. We also design a two-stage discriminator that enables user-adaptive
learning on sequential tasks. We build a general corpus of 1,000 different sentences in daily conversation and
collect over 21K samples with mmWave and video bi-modality. The evaluation results show that mSilent achieves
a comparable performance (9.5% average WER at 1.5m) with the state-of-art video-based approach. We explore
deploying mSilent into two typical scenarios of in-car assistant and text entry, and mSilent achieves only 4.1%
and 5.3% WER, respectively. We believe that this work demonstrates the potential of mSilent in general daily
scenarios and provides the possibility for future multi-modal studies.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 39. Publication date: March 2023.



39:26 • Zeng et al.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their valuable comments. This work was supported in part
by the National Natural Science Foundation of China under Grant 62272213 and 61872173, and in part by the
Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing University.

REFERENCES
[1] Triantafyllos Afouras, Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. 2018. Deep Audio-Visual Speech

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018).
[2] Yannis M Assael, Brendan Shillingford, Shimon Whiteson, and Nando De Freitas. 2016. Lipnet: End-to-end Sentence-level Lipreading.

arXiv preprint arXiv:1611.01599 (2016).
[3] Sue Atkins, Jeremy Clear, and Nicholas Ostler. 1992. Corpus Design Criteria. Literary and Linguistic Computing 7, 1 (1992), 1–16.
[4] Suryoday Basak and Mahanth Gowda. 2022. mmspy: Spying Phone Calls using mmWave Radars. In Proceedings of 2022 IEEE Symposium

on Security and Privacy (S&P ’22). 1211–1228.
[5] Dongjiang Cao, Ruofeng Liu, Hao Li, Shuai Wang, Wenchao Jiang, and Chris Xiaoxuan Lu. 2022. Cross Vision-RF Gait Re-Identification

with Low-Cost RGB-D Cameras and MmWave Radars. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3 (2022), 1–25.
[6] Zhe Chen, Tianyue Zheng, Chao Cai, and Jun Luo. 2021. MoVi-Fi: Motion-robust Vital Signs Waveform Recovery via Deep Interpreted

RF Sensing. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom ’21). 392–405.
[7] Martin Cooke, Jon Barker, Stuart Cunningham, and Xu Shao. 2006. An Audio-Visual Corpus for Speech Perception and Automatic

Speech Recognition. The Journal of the Acoustical Society of America 120, 5 (2006), 2421–2424.
[8] Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D. Manning. 2017. Key-Value Retrieval Networks for Task-Oriented

Dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL ’17). 37–49.
[9] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain Adaptation by Backpropagation. In International Conference on

Machine Learning (ICML ’15). PMLR, 1180–1189.
[10] Yang Gao, Yincheng Jin, Jiyang Li, Seokmin Choi, and Zhanpeng Jin. 2020. EchoWhisper: Exploring an Acoustic-based Silent Speech

Interface for Smartphone Users. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3 (2020), 1–27.
[11] P Ghane, G Hossain, and A Tovar. 2015. Robust Understanding of EEG Patterns in Silent Speech. In Proceedings of 2015 National Aerospace

and Electronics Conference (NAECON ’15). IEEE, 282–289.
[12] Google. 2022. Google Soli Products. https://www.atap.google.com/soli/products/
[13] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui

Wu, et al. 2020. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of the 21st Annual Conference
of the International Speech Communication Association (INTERSPEECH ’20).

[14] Unsoo Ha, Salah Assana, and Fadel Adib. 2020. Contactless Seismocardiography via Deep Learning Radars. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking (MobiCom ’20). 1–14.

[15] Uri Hadar, Timothy J Steiner, EC Grant, and F Clifford Rose. 1983. Kinematics of Head Movements Accompanying Speech during
Conversation. Human Movement Science 2, 1-2 (1983), 35–46.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’16). 770–778.

[17] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001. Gradient Flow in Recurrent Nets: the Difficulty of
Learning Long-term Dependencies.

[18] Cesar Iovescu and Sandeep Rao. 2017. The Fundamentals of Millimeter Wave Sensors. Texas Instruments (2017), 1–8.
[19] Shekh MM Islam, Naoyuki Motoyama, Sergio Pacheco, and Victor M Lubecke. 2020. Non-Contact Vital Signs Monitoring for Multiple

Subjects using a Millimeter Wave FMCW Automotive Radar. In Proceedings of 2020 IEEE/MTT-S International Microwave Symposium
(IMS ’20). 783–786.

[20] Yincheng Jin, Yang Gao, Xuhai Xu, Seokmin Choi, Jiyang Li, Feng Liu, Zhengxiong Li, and Zhanpeng Jin. 2022. EarCommand: "Hearing"
Your Silent Speech Commands In Ear. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2 (2022), 1–28.

[21] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2022. Scaling Laws for Neural Language Models. In Proceedings of the International Conference on Learning Representations
(ICLR ’22).

[22] Adam Kilgarriff and Tony Rose. 1998. Measures for Corpus Similarity and Homogeneity. In Proceedings of the Third Conference on
Empirical Methods for Natural Language Processing (EMNLP ’98). 46–52.

[23] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. 2017. Joint CTC-attention based End-to-end Speech Recognition using Multi-task
Learning. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’17). 4835–4839.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 39. Publication date: March 2023.

https://www.atap.google.com/soli/products/


mSilent: Towards General Corpus Silent Speech Recognition Using COTS mmWave Radar • 39:27

[24] Yoon Kim and Alexander M Rush. 2016. Sequence-level Knowledge Distillation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP ’16). The Association for Computational Linguistics, 1317–1327.

[25] Naoki Kimura, Tan Gemicioglu, Jonathan Womack, Richard Li, Yuhui Zhao, Abdelkareem Bedri, Zixiong Su, Alex Olwal, Jun Rekimoto,
and Thad Starner. 2022. SilentSpeller: Towards Mobile, Hands-free, Silent Speech Text Entry using Electropalatography. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22). 1–19.

[26] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on
Learning Representations (ICLR ’15).

[27] Hao Kong, Xiangyu Xu, Jiadi Yu, Qilin Chen, Chenguang Ma, Yingying Chen, Yi-Chao Chen, and Linghe Kong. 2022. M3Track: mmWave-
based Multi-User 3D Posture Tracking. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and
Services (MobiSys ’22). 491–503.

[28] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in Network. arXiv preprint arXiv:1312.4400 (2013).
[29] Fan Liu, Yuanhao Cui, Christos Masouros, Jie Xu, Tony Xiao Han, Yonina C Eldar, and Stefano Buzzi. 2022. Integrated Sensing and

Communications: Towards dual-Functional Wireless Networks for 6G and beyond. IEEE Journal on Selected Areas in Communications
(2022).

[30] Li Lu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Linghe Kong, and Minglu Li. 2019. Lip Reading-based User Authentication
through Acoustic Sensing on Smartphones. IEEE/ACM Transactions on Networking 27, 1 (2019), 447–460.

[31] Pingchuan Ma, Stavros Petridis, and Maja Pantic. 2021. End-to-end Audio-Visual Speech Recognition with Conformers. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’21). 7613–7617.

[32] Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song. 2021. Active Contrastive Learning of Audio-Visual Video Representations.
In Proceedings of the International Conference on Learning Representations (ICLR ’21).

[33] Alexander Neubeck and Luc Van Gool. 2006. Efficient Non-maximum Suppression. In Proceedings of the 18th International Conference on
Pattern Recognition (ICPR ’06). IEEE, 850–855.

[34] Laxmi Pandey, Khalad Hasan, and Ahmed Sabbir Arif. 2021. Acceptability of Speech and Silent Speech Input Methods in Private and
Public. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). 1–13.

[35] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le. 2019. Specaugment: A Simple
Data Augmentation Method for Automatic Speech Recognition. In Proceedings of the 20st Annual Conference of the International Speech
Communication Association (INTERSPEECH ’19).

[36] KR Prajwal, Triantafyllos Afouras, and Andrew Zisserman. 2022. Sub-word Level Lip Reading with Visual Attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’22). 5162–5172.

[37] Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. 2016. An Adaptive Approach for Lip-reading using Image and Depth data.
Multimedia Tools and Applications 75, 14 (2016), 8609–8636.

[38] Himanshu Sahni, Abdelkareem Bedri, Gabriel Reyes, Pavleen Thukral, Zehua Guo, Thad Starner, and Maysam Ghovanloo. 2014. The
Tongue and Ear Interface: a Wearable System for Silent Speech Recognition. In Proceedings of the 2014 ACM International Symposium on
Wearable Computers (ISWC ’14). 47–54.

[39] Panneer Selvam Santhalingam, Al Amin Hosain, Ding Zhang, Parth Pathak, Huzefa Rangwala, and Raja Kushalnagar. 2020. mmASL:
Environment-Independent ASL Gesture Recognition using 60 GHzMillimeter-wave Signals. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 4, 1 (2020), 1–30.

[40] Neil Shah, Nirmesh J Shah, and Hemant A Patil. 2018. Effectiveness of Generative Adversarial Network for Non-Audible Murmur-
to-Whisper Speech Conversion. In Proceedings of the 19st Annual Conference of the International Speech Communication Association
(INTERSPEECH ’18).

[41] Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Abdelrahman Mohamed. 2022. Learning Audio-Visual Speech Representation by
Masked Multimodal Cluster Prediction. In International Conference on Learning Representations (ICLR ’22).

[42] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-scale Image Recognition. In Proceedings of
the International Conference on Learning Representations (ICLR ’15).

[43] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. 2017. Lip Reading Sentences in the Wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’17). 6447–6456.

[44] R. William Soukoreff and I. Scott MacKenzie. 2003. Metrics for Text Entry Research: An Evaluation of MSD and KSPC, and a New
Unified Error Metric. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’03). 113–120.

[45] Ke Sun, Chun Yu, Weinan Shi, Lan Liu, and Yuanchun Shi. 2018. Lip-interact: Improving Mobile Device Interaction with Silent Speech
Commands. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST ’18). 581–593.

[46] Ke Sun and Xinyu Zhang. 2021. UltraSE: Single-channel Speech Enhancement using Ultrasound. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking (MobiCom ’21). 160–173.

[47] Raphael Tang, Jaejun Lee, Afsaneh Razi, Julia Cambre, Ian Bicking, Jofish Kaye, and Jimmy Lin. 2020. Howl: A Deployed, Open-
Source Wake Word Detection System. In Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS ’20). Association for
Computational Linguistics, 61–65.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 39. Publication date: March 2023.



39:28 • Zeng et al.

[48] Kristin J Teplansky, Brian Y Tsang, and Jun Wang. 2019. Tongue and Lip Motion Patterns in Voiced, Whispered, and Silent Vowel
Production. In Proceedings of the International Congress of Phonetic Sciences (ICPhS ’19). 1–5.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. In Advances in Neural Information Processing Systems (NeruIPS ’17).

[50] Michael Wand, Christopher Schulte, Matthias Janke, and Tanja Schultz. 2013. Array-based Electromyographic Silent Speech Interface.
In Biosignals. 89–96.

[51] Chao Wang, Feng Lin, Zhongjie Ba, Fan Zhang, Wenyao Xu, and Kui Ren. 2022. Wavesdropper: Through-wall Word Detection of Human
Speech via Commercial mmWave Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2 (2022), 1–26.

[52] Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun Wu, and Lionel M. Ni. 2014. We Can Hear You with Wi-Fi!. In Proceedings of the
20th Annual International Conference on Mobile Computing and Networking (MobiCom ’14). 593–604.

[53] Jingxian Wang, Chengfeng Pan, Haojian Jin, Vaibhav Singh, Yash Jain, Jason I Hong, Carmel Majidi, and Swarun Kumar. 2019. Rfid
Tattoo: A Wireless Platform for Speech Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4 (2019), 1–24.

[54] HaowenWei, Ziheng Li, Alexander D Galvan, Zhuoran Su, Xiao Zhang, Kaveh Pahlavan, and Erin T Solovey. 2022. IndexPen: Two-Finger
Text Input with Millimeter-Wave Radar. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2 (2022), 1–39.

[55] Li Wen, Changzhan Gu, and Jun-Fa Mao. 2020. Silent Speech Recognition based on Short-range Millimeter-wave Sensing. In Proceedings
of 2020 IEEE/MTT-S International Microwave Symposium (IMS ’20). 779–782.

[56] ChenshuWu, Feng Zhang, Beibei Wang, and KJ Ray Liu. 2020. mmTrack: Passive Multi-Person Localization using Commodity Millimeter
wave Radio. In Proceedings of 2020 IEEE Conference on Computer Communications (INFOCOM ’20). 2400–2409.

[57] Chenhan Xu, Zhengxiong Li, Hanbin Zhang, Aditya Singh Rathore, Huining Li, Chen Song, Kun Wang, and Wenyao Xu. 2019. WaveEar:
Exploring a mmWave-based Noise-resistant Speech Sensing for Voice-User Interface. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’19). 14–26.

[58] Linghan Zhang, Sheng Tan, and Jie Yang. 2017. Hearing Your Voice is not Enough: An Articulatory Gesture based Liveness Detection for
Voice Authentication. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). 57–71.

[59] Qian Zhang, Dong Wang, Run Zhao, and Yinggang Yu. 2021. SoundLip: Enabling Word and Sentence-level Lip Interaction for Smart
Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 1 (2021), 1–28.

[60] Ruidong Zhang, Mingyang Chen, Benjamin Steeper, Yaxuan Li, Zihan Yan, Yizhuo Chen, Songyun Tao, Tuochao Chen, Hyunchul Lim,
and Cheng Zhang. 2021. SpeeChin: A Smart Necklace for Silent Speech Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 5, 4 (2021), 1–23.

[61] Yongzhao Zhang, Wei-Hsiang Huang, Chih-Yun Yang, Wen-Ping Wang, Yi-Chao Chen, Chuang-Wen You, Da-Yuan Huang, Guangtao
Xue, and Jiadi Yu. 2020. Endophasia: Utilizing Acoustic-based Imaging for Issuing Contact-free Silent Speech Commands. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 4, 1 (2020), 1–26.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 39. Publication date: March 2023.


	Abstract
	1 Introduction
	2 Related work
	2.1 Wearable Device-based SSR
	2.2 Video-based Lip Reading and SSR
	2.3 Wireless Signal-based SSR
	2.4 mmWave-based Sensing

	3 System Overview
	4 Signal Processing Design
	4.1 mmWave Signal Capture
	4.2 Clustering-Selection Algorithm
	4.3 Multi-Scale Detrended Spectrogram
	4.4 Data Augmentation

	5 DNN Design
	5.1 Multi-Branch Convolutional Front-end
	5.2 Transformer-based Seq2Seq Back-end
	5.3 Exploring User Adaptive Learning on Sequential Task

	6 Implementation
	6.1 Bimodal General Corpus Dataset
	6.2 Implementation Details

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Performance Comparison with Baselines
	7.3 Performance in New Environments
	7.4 Performance of User Adaptive Learning
	7.5 Impact of Position and Orientation
	7.6 Micro Benchmark
	7.7 System Latency

	8 Case Study
	8.1 In-car Assistant
	8.2 Text Entry

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

