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Abstract—Continuous domestic respiration monitoring
provides vital information for diagnosing assorted diseases. In
this paper, we introduce RESPTRACKER, the first continuous,
multiple-person respiration tracking system in domestic settings
using acoustic-based COTS devices. RESPTRACKER uses a
two-stage algorithm to separate and recombine respiration
signals from multiple paths in a short period so that it can
track the respiration rate of multiple moving subjects. Our
experimental results show that our two-stage algorithm can
distinguish the respiration of at least four subjects at a distance
of three meters.

I. INTRODUCTION

Background and Motivation: Respiration is one of the vi-
tal signs that contain valuable information to diagnose assorted
diseases, e.g., pulmonary disease [1], heart failure [2], anxi-
ety [3], and sleep disorders [4]. Clinical instruments, such as
capnography or plethysmography, provide reliable respiration
measurements. However, they need professional operators and
cannot be deployed in the domestic scenario to perform long-
term monitoring, which is vital to early diagnoses of chronic
diseases, such as obstructive sleep apnea syndrome (OSAS)
and chronic obstructive pulmonary disease (COPD). As a
result, the development of domestic continuous respiratory
monitoring systems has attracted increasing research interest
in recent years.

There are domestic respiratory monitoring systems based
on cameras [5] or using special devices, including belt integ-
rated with capacitive sensors [6] or smart cushion with air
pressure sensors [7]. However, user studies have shown that
people are reluctant to deploy these devices due to privacy
concerns [5], [8] or the high cost and long-term physical
contact requirements [6], [7]. A more promising solution is
enabling device-free respiratory monitoring with ubiquitously
available wireless signals emitted by commercial off-the-shelf
(COTS) devices in domestic settings [9]–[11].

Limitations of Prior Art: Existing device-free respiratory
monitoring systems leverage two types of signals emitted
by COTS devices: radio frequency (RF) signals and ultra-
sound signals. One popular solution for RF-based systems is
collecting Wi-Fi channel state information (CSI) for further
respiration measurements [12]. However, due to the narrow
bandwidth of Wi-Fi signals, the range resolution of CSI is too
low to separate two nearby respiration signals. For example,
the aliasing range between two non-resolvable paths is 7.5 m
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Figure 1. General application scenario of RESPTRACKER.

for a Wi-Fi bandwidth of 40 MHz. Existing works either
rely on the differences in the respiration rate [11] or use
specialized high bandwidth frequency modulated continuous
wave (FMCW) radar and Independent Component Analysis
(ICA) [9] to separate multiple users. These solutions impose
extra assumptions on respiration patterns or need specialized
devices that increase the domestic deployment cost. Acoustic-
based systems turn the speaker-microphone pair integrated
with COTS devices, such as mobile phones and smart speak-
ers, into an active sonar to perform the respiration monitoring
task. The advantage of acoustic-based systems is the higher
range resolution [10], e.g., a typical bandwidth of 4kHz
leads to a range resolution of 8.5 cm for ultrasound signals.
However, due to the fast attenuation of sound signals, most
acoustic-based systems have a limited range of 0.7∼1.1 m
[10], [13], [14]. Therefore, their applications are limited to
sleep monitoring instead of room-scale domestic deployment
for continuous respiratory monitoring and tracking.

Proposed Approach: In this paper, we introduce
RESPTRACKER, the first continuous, multiple-person respira-
tion tracking system in domestic settings using acoustic-based
COTS devices. As shown in Figure 1, the respiration signal
of different users may arrive at the receiver through multiple
paths. RESPTRACKER proposes a multipath separation and
combination framework for robust respiration signal tracking.

First, RESPTRACKER utilizes inaudible sound signal mod-
ulated by the Zadoff-Chu (ZC) sequence to separate sound re-
flections from different users. Compared to traditional FMCW-
based systems, the key advantage of our separation scheme



is that we can precisely measure both the amplitude and the
phase of individual reflection paths. Then, RESPTRACKER
turns the indoor multipath effect into our friends by recom-
bining the multipath signals belonging to the same user. Our
signal combination algorithm performs a multi-dimensional
search and analysis among different distances, multiple re-
ceiving microphones, and different time-frames, based on the
amplitude and phase measurement of the ZC signal. In this
way, we can reliably cluster reflection paths to different users
even if they have similar respiration rates. With our two-
stage scheme, RESPTRACKER can detect reliable single person
respiration signal at a distance of 3 meters and track the
movement of each user within 20 seconds after movements.
And, we can also separate multiple subjects’ respiration and
track each of them in domestic settings.

Technical Challenges and Solutions: The first challenge is
to reliably separate multiple breath signals. Existing work for
multi-user breath detection [9] leverages the ICA algorithm to
extract different subjects’ respiration. As multiple reflections
of wireless signal are mixed at the receiver due to the limited
range resolution, they need a reliable decomposition algorithm
to separate them. To address this challenge, we use the ZC
sequence to distinguish different sound reflection paths with
a high resolution of less than 10cm. In addition, we can
measure the features of individual paths in terms of the channel
impulse response (CIR). In this way, each path contains less
interference of other subjects so that the difficulty of signal
decomposition is greatly reduced.

The second challenge is to expand the monitor range to the
room-scale. Since the ultrasonic signal attenuates quickly in
indoor environments, the measurement of a single path could
be noisy and inaccurate. Traditional delay-and-sum algorithm
for beamforming blindly combines signals from the same
distance and angle where the weak respiration signal may be
destroyed by the out-of-phase combination. To resolve this
issue, we use a multi-dimensional signal combination scheme
to select and recombine the respiration signals from the same
user. We first leverage multiple microphones that are common
on COTS devices, such as Amazon Echo and Google Home,
to collect multiple copies of the sound reflections. Based on
the multipath phenomenon, we collect sound reflections on
paths at different distances that arrive at the same microphone.
By clustering these multi-dimensional reflection signals, we
can determine whether a given path on a given microphone
contains the respiration signal and which user the respiration
signal belongs to. In this way, we are able to combine a
large number of weak paths from the same user, thereby
reconstructing the respiration signal reliably and achieving
long-distance monitoring.

The third challenge is to track the respiration signal while
the subject is moving. As users may not keep static in their
daily routine, our monitoring system should be able to keep
tracking while users change their position or orientation.
To achieve respiration tracking under dynamic position and
orientation, we divide the signal into short observation slots
with a duration of twenty seconds. Within each slot, we first

(a) CIR amplitude of a single frame.

(b) Time variations of CIR amplitudes.
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(c) Filtered CIR amplitude at different distances.
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(d) Reconstructed respiration signal.

Figure 2. CIR waveform of a single subject

determine whether there are users’ movements and then track
the distance change of each reflection path. Therefore, we can
quickly use the historical data to regain synchronization within
twenty seconds after the movement.

Summary of Experimental results: In the single user
scenario, our system can robustly estimate the respiration rate
with an error under 0.6 Beats per Minute (BPM) for different
environments, such as in the hallway, offices, and conference
rooms. RESPTRACKER can also achieve an error of less than 1
BPM within a distance of three meters and maintain an error of
less than 0.8 BPM while the user is moving. In the multi-user
scenario, RESPTRACKER can separate the respiration signal of
more than four users in the same room and achieve an error
of less than 1 BPM for each user.

II. SYSTEM OVERVIEW

RESPTRACKER aims at multiple-person room-scale respir-
ation tracking. Therefore, the system is supposed to detect and
separate the weak reflection signals at a long range reliably.

A. Design Motivations

To understand the design challenges for long-range respir-
ation signal detection and separation, we provide a typical
respiration signal illustration in Figure 2. Figure 2(a) shows
the amplitude of multipath signals at different distances, where



Figure 3. System Overview of RESPTRACKER

each peak corresponds to one signal path. From Figure 2(a),
we have two observations. First, due to the high resolution of
the sound signal, the width of each peak is less than 10 cm so
that theoretically we can separate two users even if they are
just 10 cm apart. Second, the sound signal attenuates quickly
and it is hard to reliably detect peaks at a distance of 4 meters.

Figure 2(b) further illustrates the time variations of the
paths, where we removed the static components by subtracting
the paths that are not changing within a period of half a
minute, e.g., the LOS path and reflections of walls. We observe
from Figure 2(b) that the respiration of a user causes regular
fluctuations in the corresponding path. More interestingly, a
single user may incur correlated changes in multiple paths,
as the signal may be reflected by the wall before reaching
the chest of the user and may reflect from different parts
of the chest. While these reflections are weak, they provide
important respiration information of the same user. This is
because it is well known that the signal quality of a single path
largely depends on the posture and angle of the user [11]. The
fluctuations of a single path may be undetectable for certain
user orientations, which lead to interruptions in continuous
monitoring. Therefore, it is vital to combine the information
of different paths to perform reliable continuous monitoring.

Figure 2(c) shows the waveform of the respiration signal of
the same user at reflection paths at different distances. While
the patterns of these signals are similar, they have different
phases and signal details. Therefore, directly adding these
paths may not be an effective way to enhance the signal.

Based on the above observations, we find that
RESPTRACKER needs to address two important challenges.
First, how to efficiently separate and identify the multipaths
of different users? Second, how to reliably combine and
reconstruct the breath signals from different paths belonging
to a single user?

B. System Design

To address the above challenges, RESPTRACKER proposes
a two-stage design as shown in Figure 3.

The first stage is signal separation. We use COTS speakers
to transmit ZC modulated sound signals. The reflected signals
are received by a microphone array that collects multiple
copies of the reflection signal. We perform frequency domain

cross-correlation between the received and the transmitted sig-
nal to derive the CIR. We detect each path in random sampled
frames and calculate the respiration SNR in the frequency
domain to select paths that are candidates of respiration related
reflections that will be used in the second stage.

The second stage is path combination. To expand the
sensing range, we first perform cross-correlation between the
detected paths and their surrounding samples to calculate delay
and conduct delay-and-sum in the local paths. We then use a
Principal Component Analysis (PCA) algorithm to optimally
combine the time-domain waveform of the detected paths.
Based on the combined respiration signal, we perform the
room-scale tracking by calculating the waveform of each ob-
servation slot independently. Finally, we use the reconstructed
breath signal to perform breath rate estimation for each user.

III. SIGNAL SEPARATION

We use ZC sequences that have ideal auto-correlation
property to separate paths of different users and at different
distances.

A. ZC Modulation

The transmitting signal used in RESPTRACKER is the ZC
sequence modulated by a sinusoid carrier [15]. The ZC se-
quence with a length of Nzc is given by:

zc[n] = e−j
πu(n+1+2q)

Nzc , n = 0, ..., Nzc − 1, (1)

where the u and q are the parameters of the sequence. We set
q to 0, u to 1, and Nzc to 199 representing a 2 kHz bandwidth
in the modulated signal. Once we get the baseband signal, we
use frequency domain interpolation to expand the sequence
to a length of L, which is the frame length of our OFDM
symbol and is set to 4800 samples in our scheme. We then
modulate the signal with a carrier sinusoid at a frequency of
fc by moving the baseband sequence to the higher frequency
part. Before performing Inverse Fast Fourier transform (IFFT)
for OFDM modulation, we set the negative frequency part
to the conjugate counterpart of the signal on the positive
frequency. Algorithm 1 shows the detailed process, where fs
is the sampling frequency. After we generate one frame of the
time-domain real signal zcT [n], we transmit it repeatedly so
that the transmitted signals are cyclical OFDM symbols.

Algorithm 1: Transmitting signal generation
Result: The modulated sequence zcT [n] with a length

of L and a carrier frequency of fc.
1 Generate zc[n] from Eq.1 with a length of Nzc.
2 Perform FFT on zc[n] to get ZC[n].
3 Perform FFT shift on ZC[n] to get ZCs[n].
4 Generate a all zero sequence ẐC[n] with a length of L.
5 ẐC[ fcLfs −

(Nzc−1)
2 : fcLfs + (Nzc−1)

2 ]⇐ ZCs[n].
6 ẐC[L− fcL

fs
− Nzc−1

2 : L− fcL
fs

+ Nzc−1
2 ]⇐ ZC∗[n].

7 Perform IFFT on ẐC to the time-domain zcT [n].



B. ZC Demodulation

After the signal is transmitted from the speaker, the micro-
phone array at receiver side records the signals that comes
from both the LOS path and the reflections of subjects and
the environment. On one pair of speaker/microphone, we
can extract one set of CIR per OFDM frame by performing
cross-correlation between the received signal and the known
transmitted signal [15]. Instead of using the time domain
down-conversion and correlation as in [15], we leverage the
frequency domain multiplication to perform the frequency-
domain correlation which will greatly reduce the computa-
tional complexity of correlation.

The received signal is modeled as:

zcR[n] =

P∑
i=1

Aie
−jφi(t)zcT

[
n− τi

fs

]
, (2)

Where zcR[n] is received signal, P is the number of paths,
Ai is attenuation coefficient of path i, φi is the phase shift
caused by the propagation/reflection of path i and τi is the
time of flight (ToF) of path i. We first segment the received
signal into frames with the same length of L. We then
perform FFT on each frame and extract OFDM passband
frequency components ZCR[n] corresponding to the trans-
mitted ZCs[n]. We multiply ZCR[n] by ZC∗

s [n] to perform
cross-correlation in the frequency domain. According to the
ideal auto-correlation property of ZC sequence [16], the auto-
correlation of ZCs[n]× ZC∗

s [n] is all 1 in the frequency do-
main. Therefore, the cross-correlation gives an ideal CIR under
the bandwidth limitation. We use zero-padding to expand the
frequency domain baseband length to L then perform an IFFT
to get an interpolated time-domain CIR. The peaks in the
resulting CIR denote different delayed versions of transmitted
signal from different paths, as shown in Figure 2(a). Algorithm
2 shows the detailed demodulation process.

Algorithm 2: Received signal demodulation
Result: The interpolated time-domain cir[n].

1 Perform FFT on zcR[n] to get ZCR[n].
2 CIRbaseband[n]⇐ ZCR[n]× ZCs[n].
3 Generate an all-zero sequence CIR[n].
4 CIR[0 : Nzc−1

2 ]⇐ CIRbaseband[0 : Nzc−1
2 ]

5 CIR[L− Nzc+1
2 : L]⇐ CIRbaseband[

Nzc+1
2 : Nzc]

6 Perform IFFT on CIR[n] to the time-domain cir[n].

On each pair of speaker/microphone, we obtain one meas-
urement of cir[n] for an OFDM frame, which has a duration of
0.1 second. We assemble the measurement of CIR in multiple
OFDM frames within an Observation Slot to form a 2D CIR
map as shown in Figure 2(b). The time-domain resolution of
0.1s in the CIR map gives a sampling rate of 10Hz, which is
adequate for monitoring respiration signals that have typical
frequency of 0.1∼0.5 Hz.

C. Path Selection

Before we reconstruct the respiration signals from multiple
paths, we need to first select correct paths to that contains
breath related signal patterns. As modeled in Eq. (2), we can
denote breath related reflections as:

zcRb [t] = Ae−j(
2πfd(t)

c +p)zcT

[
n− dbody + d(t)

c× fs

]
(3)

Where dbody is the path length of user’s body reflection, d(t) is
the chest movement during the exhaling and inhaling, which is
a periodic signal, and p is the phase shift cause by the software
delay and reflection phase inversion. Under this model, the
corresponding CIR is:

cirRb [t] = Ae−j(
2πfd(t)

c +p)sinc

[
n− dbody + d(t)

c× fs

]
(4)

As the OFDM signal is band-limited with a rectangular
frequency gate function, the corresponding time-domain CIR
is a convolution of the sinc function with the impulsive
response. For a breath movement with a period of 1

fb
, the

corresponding CIR peak will move back-and-forth with an
amplitude of dr around dbody . As the LOS and reflection from
static environment or static body parts remain almost the same
along with time, we can separate the static paths and the breath
related paths by their periodicity. After the system starts for
monitoring, we first determine the location of the LOS path by
voting for the maximum peak location of the first Lv frames
which is set to 20 in experiments and is corresponding to
2 seconds. The LOS localization is an one-time calibration
because the distance between speaker and microphone is fixed
during the monitoring.

Static Signal Removal and Random Sampling: After loc-
alized the LOS path, we remove both the LOS path and static
reflection. As the LOS and static reflections corresponding to
peaks with quasi-static amplitude and phase, we can remove
them by subtracting the average complex-valued CIR of each
observation slot from each CIR frame. In this way, the remain-
ing non-zero peaks corresponds to dynamical paths. We then
randomly sample R frames in the observation slot to detect the
dynamical paths. The random sampling scheme is robust for
respiration detection as the paths corresponding to respiration
may periodically disappear due to chest movements.

We use two extra constraints to remove the interference of
noisy paths. First, we remove peaks that have an amplitude
smaller than a threshold β of the maximum dynamical path.
This effectively removes the fluctuation caused by the side-
lobes of the sinc function and we set the threshold β = 0.2.
Second, we remove paths that are within Tb sample points to
avoid repetition.

Breath SNR Calculation: After detecting the dynamical
paths, we use the breath SNR to determine whether the path
contains respiration signal or other interfering movements. The
breath SNR is based on the observation that the respiration
signal will have a strong frequency component within the
breath frequency range of 0.1∼0.5 Hz as indicated in Eq. (4).
Therefore, for a specific dynamical path, we first perform an



FFT along the time-axis to get the spectrum of the path. We
then measure the maximum energy in the FFT bins within the
breath frequency range of 0.1∼0.5Hz as Emax. The breath
SNR is defined as w1

Emax
(
∑
f∈[0.1,0.5] Ef )−Emax

+w2
Emax∑

f∈[0.5,5] Ef
,

which is a weighted sum of the uniqueness of the peak
within the breath frequency range and the strength of the peak
comparing to other movements. In this way, we can detect
the candidate paths that corresponds to breath movements for
further path combinations in the next section.

IV. PATH COMBINATION

In this section, we reconstruct the respiration signal through
two-round path combinations on the candidate paths detected
in the previous section. We also illustrate how to separate the
respiration signal of multiple users and how to track users if
they move during the monitoring.

A. Two-Round Combinations

Traditional delay-and-sum combinations for beamforming
does not work well for respiration signal reconstruction as
shown by our experimental results in Section V. Therefore,
we propose a two-round combinations scheme to enhance the
respiration signal.

Local Path Combination: According to our signal model,
the CIR samples surrounding each peak share the same pattern
of the path at the peak so that we can combine them to enhance
the common features caused by breathing. Specifically, we
calculate the cross-correlation between the candidate paths and
Nlocal path samples around them to get the weight parameter.
We then delay the surrounding paths and use a weighted-sum
to add them to the candidate path to reduce the noise of the
single sample at the candidate peaks.

Path Combination from Different Distances: In this
subsection, we first consider path combination for a single
user where all candidate paths are from the same respiration
movements. After the local combination, we gather the can-
didate paths from different distances and microphones together
to form a matrix X with a size of n × Tp, where n is the
total number of candidate paths and Tp is the number of
frames in the observation slot. We only use the amplitude of
the candidate paths to avoid the phase noises in paths. We
then remove the static part of each row through the LEVD
algorithm [17] and apply a moving average filter with a length
of nine samples to smooth the waveform.

Although these data are all from single user and share the
same breath pattern, they have different phases and signal
details, see Figure 2(c), caused by the propagation delay and
environment reflections. A straightforward method is to use
the breath SNR as an indicator and exhaustively search for
all possible phase delay parameter to maximize the SNR of
generated signal, which is time-consuming. Instead of using
this method, we use the PCA algorithm to extract the principal
components which are strongly correlated to the respiration
signal. The first principal component of the signal matrix gives
a low-noise reconstruction of the respiration signal. Figure

Figure 4. CIR map with two users in the environment.

2(d) compares the reconstructed respiration waveform and the
ground truth waveform captured by the respiration belt.

B. Path Clustering for Multiple Users

In real-world scenarios, there might be more than one user
in the room. Therefore, we need to distinguish the paths
belonging to each user before performing the combination.

Separation of Different Users: As our ZC sequence has
a range resolution of around 10 cm, we can separate users
by their different distances to the receiver. Figure 4 shows
the CIR map when there are two users at distance of 1
meter and 1.5 meters. We can clearly observe two traces
related to the respiration signal from these two users at
corresponding distances. We treat the user separation problem
as an unsupervised classification problem and use the K-means
algorithm to perform clustering of paths. As different users
may have similar breath rates and phases, we use the distance
as the feature of the clustering algorithm. After the clustering,
the paths of the same user are more likely to be placed in the
same class since the effective multipath reflections are mostly
around the direct reflection. We then perform the two-round
combinations algorithm to reconstruct the respiration signal of
each user.

In the multiple users scenario, each user may have different
breath SNR. So, we reduce the SNR threshold to cover more
paths to include more paths for multipath clustering.

C. Tracking

Users may move during the respiration monitoring period.
Therefore, we need to relocate the users and regain synchron-
ization after each movement. To achieve this, we divide the
continuous monitoring period into shorter observation slots
and perform user tracking within each slot.

To balance between the accuracy of movement detection
and delay of respiration rate estimation, we choose to set the
observation slot length to 20 seconds, which lasts 200 OFDM
frames. Within each observation slot, we perform movement
detection on the path index change and combination result.
When a movement occurs, the peaks found for breath will
move largely and the periodic pattern of the result will be
devastated. This is because we sample the frames randomly
within the observation slot, and the possibility of the small
portions of movements being sampled is quite small and
the selected paths’ major component are still breath related.
However, when there are movements across the whole slot,
we should entirely discard the given slot. In this case, the re-
constructed waveform has an abrupt shape with no periodicity



which can be used for motion detection during monitoring and
it’s beyond the scope of our work. We should also perform
a re-synchronization in the next observation slot, especially
when there are more than one users in the sensing range. In
the re-synchronization process, we should match the candidate
clusters in the current observation slot with those in the
previous slots. We use the mean-square of the difference
between cluster centers to perform the matching so that when
users are moving, static users will be first matched to their
historical clusters and moving users will be relocated to new
positions.

D. Breath Rate Estimation

After we reconstructed the waveform of each observation
slot, we estimate the number of breath periods for each user.
Within each observation slot, we use a moving average filter
to eliminate noise and false respiration peaks. Since the breath
rate may vary from 0.1Hz to 0.5Hz, we cannot use a fixed
empirical window size for the moving average filter. To adapt
the length of moving average filter, we extract the FFT energy
within the range of human respiration frequency as the feature.
We then use a Support Vector Machine (SVM) to select the
filter length based on the FFT energy features.

After the smoothing process, we normalize the waveform
through min-max normalization and perform peak detection.
The detected peaks must satisfy two constraints. First, the
interval of two adjacent peaks must bigger than 20 sampling
points because the breath frequency range in our system is
from 0.1 Hz to 0.5 Hz and the smallest possible interval is 20
sampling points. Second, the prominence of the peaks must be
bigger than an empirical threshold Thr. Since the waveform
is already smoothed and normalized, the Thr is set to 0.05 to
avoid false alarms. We then further estimate the BPM and the
breath interval time of users based on the detected peaks.

V. IMPLEMENTATION AND EVALUATION

We implement RESPTRACKER on Raspberry Pi 3B+ [18]
and desktop computers using Python. The Raspberry Pi is
equipped with a speaker and a 6-mic circular microphone array
[19] to transmit and receive acoustic signal at a sample rate of
48 kHz. The captured sound signal is sent to PC through Wi-
Fi in real-time for further processing. The ground truth of the
respiration signal is collected through a Vernier respiration belt
[20] that measures the pressure of the chest. As the subjects
inhale and exhale, the sensor will record the pressure change
of the belt caused by the chest. The devices used in our
experiments are shown in Figure 5.

We use two key metrics to evaluate the performance of
RESPTRACKER. The first metric is the BPM that indicates
the average frequency of the breath. The second metric is the
breath interval that gives more detailed information about each
inhale and exhale, which is vital for diagnosing of chronic
diseases. We recruit five volunteers in our evaluation, who
are healthy graduate students from 21 to 24 years. During
the evaluation, all subjects are asked to breath normally and
we find that the resulting BPM are in the range of 10 to 20

which is consistent with the breath rates for healthy people.
For each experiment set, we repeat the processing for 10 times
and use the average errors as the experimental error to reduce
the impact of random sampling process in our algorithm.

A. Experiments in the Single User Scenario

Effective range: To evaluate the breath detection range
of RESPTRACKER, we conduct experiments in the hallway
shown in Figure 6, at different distances from 0.5 m to
4.0 m. At each distance, we collect two minutes breathing
data for five repetitions for each subject. To compare with
existing beamforming schemes, we implement a delay-and-
sum algorithm to process and combine the same data. In the
delay-and-sum scheme, we conduct the delay process in the
frequency domain and reuse the intermediate data from the
demodulation process to reduce the computational cost. To
find the proper elevation and azimuth, we first search with
a stride of 10 degree to find a coarse-grained elevation and
azimuth and then fix the elevation and search with a stride of 1
degree surrounding found azimuth to find the final parameters.
For each combination of these parameters,we calculate the
breath SNR for all the possible paths to find the combination
to maximize SNR. After that, we get the combined path of
six microphones and then calculate BPM and breath interval
time in a similar way as in RESPTRACKER.

Figure 7 shows that RESPTRACKER achieves an acceptable
measurement error of less than 1 BPM at a distance of
3.0 m. RESPTRACKER outperforms the traditional delay-and-
sum method in most cases. This is because the delay-and-sum
scheme can only combine the received data at one distance,
elevation, and azimuth. When reflected signal is quite weak,
the single path set used in delay-and-sum is unstable. In
comparison, RESPTRACKER combines multiple path sets thus
it can enhance the reflected signal multiple times and the
mean absolute errors within 3.0 m is less than 0.95 BPM,
while the error of delay-and-sum at 3.0 m is 1.60 BPM. The
measurement errors for the breath interval time are shown in
Figure 7(b). The measurement error increases rapidly for the
long distances because the ultrasound attenuates quickly in
the indoor environment. Although, RESPTRACKER can still
reliably work at a distance of three meters.

Figure 8 further shows the details of the reconstructed
waveform. Note that the respiration belt can only detect the
inhale, due to the measured chest pressure should always be
non-negative, and the acoustic signal can detect both the inhale
and the exhale movements.

Robustness: To evaluate the robustness of our system in
different environments, we conduct experiments at different
locations in typical indoor environments, including hallway,
office room, conference room, and student apartment. Fig-
ure 6 shows the sample experimental environments. In each
environment, we choose four different locations based on
the environments’ condition, including facing wall, parallel
to wall, facing corner, and in the middle of room to cover
different reflection conditions. During these experiments, the
distance between the user and the microphone/speaker is fixed



Figure 5. Devices used in the experiments, including
Raspberry Pi, speaker, and respiration belt.

(a) Hallway. (b) Office room.

Figure 6. Samples of experimental environments.
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(b) Errors in breath interval time.

Figure 7. Experimental results at different distances.
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Figure 8. Reconstructed waveform in the hallway at
position 1.

to be one meter. We ask each subject to breath for two minutes
for five repetitions while sitting on a chair.

Figure 9 shows that our algorithm is robust to environ-
mental changes. Different environments only slightly affect
the performance of our system. The means absolute error
at the hallway, office room, conference room and student
apartment shown in Figure 9(a) are: 0.49, 0.57, 0.49, and 0.69
BPM, respectively. In case when there are complex multipath
conditions, the breath related paths could mix at the same
distance, causing ambiguity in the reconstructed respiration
signal that leads to higher errors. However, as our algorithm
considers paths at different distances, the impact of these
multipath signals are mitigated. We also estimate the error
of breath interval time between breaths, the average error for
these four environments are 0.207, 0.247, 0.209, and 0.217
seconds, respectively, as shown in Figure 9(c).

Tracking Performance: To evaluate the tracking perform-
ance, we requested the subjects to move during the two
minutes breathing period, but stay static before and after the
movement. We use six different moving patterns which are
from 1.0 m to 1.5 m, from 1.5 m to 2.0 m, from 1.0 m to
2.0 m, from 1.5 m to 1.0 m, from 2.0 m to 1.5 m, and from
2.0 m to 1.0 m respectively, during which the subjects are
always facing the speaker and microphone array. We denote
these movement patterns as pattern 1 to 6 on the result figure.
We conduct this experiment in the hallway.

Figure 10 shows that RESPTRACKER can track different
movement patterns. Since our system only measure the respir-
ation signal when the subject is static and the subjects only
move once during the measurement, RESPTRACKER achieves

similar performance compared to the static experiments. The
average absolute error of these six type of movement are 0.58,
0.60, 0.59, 0.47, 0.59, and 0.51 BPM respectively. The breath
interval time errors are 0.196, 0.217, 0.258, 0.199, 0.196, and
0.183 second for these movement types.

B. Experiments in the Multiple Users Scenario

Distance Resolution: To evaluate the spatial resolution of
RESPTRACKER, we invite two subjects to sit close to each
other in the hallway. We fix the distance to microphone/speaker
of one user to 1 m and adjust the distance of the other user
from 1.0 m to 2.5 m with an interval of 0.5m to change the
distance between two subjects. At each separation distance, we
collect 2 minutes breathing signal for 5 times. On top of that,
we also invite four users to sit together while the distances
between them and the sound devices are around 0.5 m, 1.0 m,
1.5 m, and 2.0 m, and try to reconstruct their breath signals.

Figure 11 shows that RESPTRACKER can reliably separate
the breath signals of two users. We have two observations
from Figure 11. First, even if the two subjects sit shoulder to
shoulder at the 1.0 m distance, we can still separate their breath
signal because the propagation distance of their reflections
are still different. However, if their positions lie on the same
ellipse with speaker and microphone on the focal point, our
system may fail. Second, as subject 2 moves away from
subject 1, the error for subject 1 decreases and then stays
stable and the error for subject 2 first decreases and then
increases. This is because when the spacing between them
becomes larger we can fully exploit the multipath reflections
to reconstruct a better waveform for both users. But, as
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Figure 9. Experimental results in different environments.
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Figure 10. Experimental results for tracking.
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Figure 11. Experimental results for spatial resolution at different distances.
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Figure 13. Experimental results for different multi-user movement patterns.

the distance increases the acoustic signal’s becomes weaker
and the error for subject 2 increases. Figure 12 shows the
reconstructed breath signals for four users at four different
distances. While the respiration signals are more noisy than in
the single user scenario due to the interference between users,
we can still reliably measure the breath rate and breath interval
time with an average error of 0.91 BPM and 0.285 seconds.

Tracking Performance: In the multiple users scenario, we
consider the movement pattern when there is only one user
moving or two users are moving away from each other. In
the initial state, the distances between two users and sound
devices are 1.0 m and 1.5 m. We then request them to conduct
six moving patterns which are moving from 1.0 m to 0.5 m,
moving from 1.5 m to 2.0 m, moving simultaneously from 1.0
m to 0.5 m and 1.5 m to 2.0 m, moving from 1.0 m to 2.0 m
and moving from 1.5 m to 0.5 m. We denote these movement
patterns as pattern 1 to 5 in the figure.

Figure 13 shows that RESPTRACKER can track the move-
ment of multiple users under different moving patterns. In

the first three patterns, two subjects doesn’t meet during the
movement and the error for these experiments are similar to
the static scenario. In the last two patterns, the subjects meet
during the movement which may affect the matching process
of the paths before and after the movement, so the error is
slightly higher for these two cases. The error in breath interval
time in Figure 13(b) also shows a similar trend.

C. Performance Experiments

Our algorithm are designed as a light-weight algorithm so
that it can be deployed on resource-limited mobile devices. To
evaluate the computational cost of our algorithm, we run the
system on different types of devices, including a Raspberry
Pi 3B+ and a desktop computer with an i7-9700 CPU and
16GB memory. On each device, we process the data of both
the single user and multiple users experiments and report the
average processing time.

Table I shows the computational time for RESPTRACKER
to process audio data of one observation slot (20 seconds) on



Table I
PROCESSING TIME ON DIFFERENT PLATFORMS

Single User Multiple Users
PC (RESPTRACKER) 0.1338s 0.3030s
PC (Delay-and-Sum) 14.5805s -

Raspberry Pi (RESPTRACKER) 2.0830s 3.7712s

different devices using different methods. The source data is
six-channel recorded sound signals at a sample rate of 48 kHz
with 32 bit float precision. We observe that our algorithm out
performs the delay and sum scheme by more than ten times.
Even on resource constrained platforms like Raspberry Pi, our
system can handle the incoming data efficiently where the
average processing time for a 20 s observation slot is 2.0830 s
and 3.7712 s for single user and multiple users. The reason
why the delay-and-sum method so slow is that it has to search
exhaustively in all azimuth and elevation to find the valid delay
and combine the signal.

VI. RELATED WORK

We summarize recent works related to respiration tracking
according to the following three categories.

Respiration Monitoring with Wireless Signals: Wireless
signals are widely used for non-invasive vital sign monitoring
[9], [21]–[23]. BreathTaking [21] leverages the received signal
strength between different pairs of network devices to conduct
the contactless breath monitoring for single person on the bed.
DeepBreath [9] uses multiple FMCW transceivers and the ICA
algorithm to separate different users’ respiration signal. Liu et
al. [22] extract breath and heart beats from the CSI gathered
by commodity Wi-Fi devices. Wang et al. [11] propose the
Fresnel Zone model of Wi-Fi sensing in which the subject’s
respiration can be hardly recognized by the CSI amplitude. To
tackle this challenge, Zeng et al. [23] exploit the complement-
ary between amplitude and phase of complex CSI data to cover
the blind point of Fresnel Zone and further use CSI ratio of
two antennas to calculate the accurate phase of reflections [24].
Yang et al. [25] leverage the high distance resolution of
UWB radars to separate different subjects’ respiration and use
image processing techniques to detect sleep apnea. ViMo [26]
leverages the high spatial resolution (distance, azimuth and
elevation) of 60GHz millimeter wave antenna array to extract
both the respiration rate and the heart rate of multiple subjects.
Although wireless devices can provide strong signal with good
quality, they are expensive and the monitoring process might
interfere with normal data transmissions.

Respiration Monitoring with Acoustic Signals: Acoustic
signal travels much slower than wireless signals. The sampling
rate of 48 kHz from COTS microphones provides a fine range
resolution of 0.7 cm, while similar resolution on RF-based
systems requires Gigahertz of bandwidth. So, recent works
exploit acoustic signal to perform device-free breath sensing.
Apneapp [10] transmits 18∼20 kHz FMCW sound signals to
estimate breathing frequency and detect sleep apnea passively.
Wang et al. [13] expand the frequency band of acoustic signal
by transforming audible white noises into FMCW signals

and enhance the signal SNR with receiving-end beamforming
to conduct infant respiration monitoring. Unlike traditional
processing methods for FMCW signal, CFMCW [14] uses
cross-correlation to increase the accuracy of the acoustic-
based breath sensing. Xu et al. [27] leverage Energy Spectrum
Density (ESD) of a single-frequency acoustic signal, Ensemble
Empirical Mode Decomposition, and Generative Adversarial
Network to reconstruct the breathing signal in a driving
scenario. The vital problem of acoustic based approach is the
attenuation of sound in the air, which makes it hard to expand
the sensing range to more than two meters.

Beamforming of Wireless Signals: Beamforming is an
important technique in wireless communication, as it can
enhance signal strength from/to different direction with receiv-
ing/transmitting array. In the wireless transmission scenario,
Phaser [28] enables phase array signal processing on COTS
device which increases spatial resolution, decreases phase
error and suppressed the multipath interference. Wang et al.
[29] use a blind distributed beamforming on both uplink and
downlink to increase the backscatter sensing distance to 64
meters. For wireless sensing and tracking, mdTrack [30] gives
a multi-dimensional Wi-Fi localization model and drastically
increases passive localization divisibility. Vasisht et al. [31]
analyze time of flight in different frequency band and between
different TX/RX pairs to reach decimeter-level localization
accuracy. WiDar 2.0 [32] and FreeSense [33] calculate the
AoA and ToF to match and localize the moving subject. In
sound signal processing, Roy et al. [34] set up a speaker array
to achieve long-range ultrasound attacks on voice assistants.
Moutinho et al. [35] address the inverse problem of localizing
microphones with speaker arrays that are playing predefined
sounds. Shen et al. [36] leverage microphone array and
reflections from the wall to localize sound source. Most of
the existing beamforming techniques ignore the possibility of
utilizing the multipath effect to enhance the received signal.

VII. CONCLUSION

In this paper, we present new insights on how to tackle
the design challenges for long-range, multiple users domestic
respiration tracking systems. We propose to exploit the mul-
tipath effect to recombine the reflections in order to improve
system sensitivity and robustness. In this way, we expand
the sensing range of acoustic respiration patterns from the
0.7 to 1.0 meters in previous works to a room-scale of 3.0
to 4.0 meters. We believe our new insights could bring new
opportunity for domestic sensing application.
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