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Design for low latency networking is essential for tomorrow’s interactive applications, but it is essential
to deploy incrementally and universally at the network’s last mile. While wired broadband ISPs are rolling
out the leading queue occupancy signaling mechanisms, the cellular Radio Access Network (RAN), another
important last mile to many users, lags behind these efforts. This paper proposes a new RAN design, L4Span,
that abstracts the complexities of RAN queueing in a simple interface, thus tying the queue state of the RAN
to end-to-end low-latency signaling all the way back to the content server. At millisecond-level timescales,
L4Span predicts the RAN’s queuing occupancy and performs ECN marking for both low-latency and classic
flows. L4Span is lightweight, requiring minimal RAN modifications, and remains 3GPP and O-RAN compliant
for maximum ease of deployment. We implement a prototype on the srsRAN open-source software in C++. Our
evaluation compares the performance of low-latency as well as classic flows with or without the deployment
of L4Span in various wireless channel conditions. Results show that L4Span reduces the one-way delay of
both low-latency and classic flows by up to 98%, while simultaneously maintaining near line-rate throughput.
The code is available at https://github.com/PrincetonUniversity/L4Span.
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1 Introduction
Today and tomorrow’s interactive applications (e.g., videoconferencing, AR/VR, cloud gaming) all
depend on controlling content senders’ rates to strike a balance between utilizing the network and
avoiding latency-inducing queues. Indeed, recent congestion control algorithms have been evolving
to design for this balance [8, 22, 32, 60]. To realize this higher performance bar, congestion control
algorithms have explored feedback information from the receiver or network that is more timely
and richer than simply packet loss (e.g., ABC [36], XCP [45]). The key to realizing these protocols on
the Internet, however, is end-to-end deployability, and for this, one front-running approach is the
use of Explicit Congestion Notification (ECN) bits coupled with Low Latency Low Loss Scalable (L4S)
congestion signaling [13, 16, 69]. L4S is gaining traction: it is currently rolling out in broadband
cable service provider networks as Low Latency DOCSIS [26, 58], and the mobile standards body,
3GPP, has stated its intention to standardize L4S in the cellular Radio Access Network (RAN) [1].

Despite being a very widely-used last-mile network, the cellular RAN faces unique challenges in
its ability to signal congestion end-to-end, to applications and transport protocols. This is broadly
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Fig. 1— L4S status quo: Some backbone and broadband ISPs deploy L4S routers (left), but for mobile users,
the 5G network is key to performance, yet lacks L4S functionality (right).

because of its complexity, but specifically because the many queues of 5G networks are hidden deep
inside the highly-layered 5G RAN protocol suite, whose structure exists alongside, but is mostly
opaque to, Internet protocols at all layers of the Internet’s protocol stack [37, 47, 56, 57]. The result
is that a very large, multi-hop network (the 5G Core sub-network and RAN sub-network) is hidden
from L4S, unintentionally subverting the efficiencies of the L4S signaling architecture (see §2 next).

Furthermore, realizing L4S congestion signaling in the RAN faces additional challenges stemming
from the fundamental differences between wired and wireless networks. First, the vagaries of
wireless propagation, complexities in the handoff process between cell towers, and non-uniform
traffic scheduling results in a highly variable capacity. While existing wired L4S routers set a
very low queuing delay target (e.g., one millisecond) and mark the ECN bit of all packets if the
sojourn time of the queue exceeds it, the cellular RAN thus demands a different approach. Second,
compounding the challenge, the RAN is notably flexible in its configuration as a network, adapting
to varying traffic demand from even a single client with the capability to dynamically add and
remove cell towers from the set of those simultaneously serving that client (also known as carrier
aggregation). Third, as we explain in more detail in §4, heterogeneous client capabilities interact
with the limited quality-of-service queuing capabilities the 5G RAN currently offers, interacting
with the end-to-end congestion control loop in subtle ways.

These challenges motivate a fresh look at the internal data flow signaling mechanisms of the 5G
RAN to ask whether it is possible to bring the benefits of L4S in wired networks to 5G. We seek
minimal changes to the 5G network that will allow us to monitor all relevant queue occupancies,
and predict into the short-term, future queuing delay. Also required is an architectural design that
spans the two networks’ (5G and Internet) currently-disjoint signaling mechanisms to provide
timely congestion signals to L4S-capable as well as legacy content senders.
This paper presents L4Span, a new design for the 5G RAN that passively estimates the queuing
delay of each mobile user and signals the congestion to the content server sender through markings
on the packets’ header. With ECN feedback reflecting the 5G network condition, the L4S sender
can accurately adjust its sending rate to minimize queuing delay in the 5G Radio Link Control
(RLC) layer (see Fig. 1), while maintaining high throughput. Since wireless throughput is so volatile,
L4Span needs to make real-time queuing delay estimates and predictions, for each queue in the 5G
network. Our design abstracts the complex queuing and scheduling functions of the Distributed
Unit (DU) into a single, agile rate estimate that the DU communicates to the Central Unit (CU) of
the RAN, as shown in Fig. 1. Classic TCP and UDP traffic flows are still a major component of user
traffic on the Internet [73], and L4Span also maintains, and improves performance for these flows.
Our design makes the following contributions: 1) To cope with the wireless RAN’s high jitter,

L4Span permits slightly larger bounded queues, but also designs a novel packet marking algorithm
(§4.2) that takes the telemetry of the RAN scheduler and both L4S and classic end-to-end congestion
control algorithms’ behavior into account. 2) To minimize queuing delay, L4Span innovates a
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(a) CUBIC and L4S in a wired network.
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(b) CUBIC and L4S in a 5G network.
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(c) CUBIC and L4S in 5G + L4Span.

Fig. 2— Performance of L4S and CUBIC in different networks: L4S routers in wired networks achieve
line rate and extremely low latency, but are much less effective in 5G networks that don’t expose their queues.
Both L4S and CUBIC’s latency is reduced with L4Span in 5G, and both maintain line rate (green area). In the
latter two figures, the bottleneck shifts from the RAN to wired middleboxes at 10s and shifts back at 20s.

queuing sojourn time prediction algorithm (§4.3) that integrates with the 5G RLC layer. We further
analyze its performance (§6.3), shedding light on this important fundamental problem. 3) L4Span
provides a reference implementation for the cellular RAN that is currently missing in the L4S
ecosystem, achieving low latency and high throughput for both L4S and classic flows.
L4Span is a clean and practical-to-deploy design in the 5G RAN, making minimal changes and

modifications to the current 3GPP standardized layer structure and the 5G network design as a
whole. L4Span requires only mandatory control messages in 3GPP for its egress rate estimation,
and conforms to both 3GPP and O-RAN standards. L4Span performs only ECN bit marking in the
TCP and IP headers, making its existence transparent to other components in the RAN. Further, our
design only reads and reuses currently-existing messages and state in the 5G RAN to achieve its
goal on queuing delay prediction, necessitating no intrusive modifications on the bulk of the RAN.
Finally, L4Span considers all the corner RAN configuration cases that might affect the performance,
such as different 5G RLC modes (§4.3) and different 5G DRB configurations (§4.2).
Section 2 of this paper goes into further technical detail of L4Span’s motivation. Section 3 surveys
related work, after which we present a detailed design in Section 4 and our implementation in
Section 5. Our evaluation follows in Section 6, measuring L4Span operating with many different
senders, including TCP Prague, CUBIC, and BBRv2. Top-line results show that L4Span reduces
one way delay by up to 98% while maintaining near line-rate throughput in a busy 5G network
with 64 concurrent L4S clients. Further results show that L4Span also optimizes the performance
of classic flows, achieving up to 97% RTT reduction in a 16-client RAN and reducing the finish
time of short-lived TCP flows competing with long-lived background traffic by a factor of 4×. With
regards to video conferencing, our results show that L4Span improves the performance of SCReAM
interactive video congestion control [29], reducing RTT time by a factor of 3× while maintaining
throughput. Section 8 concludes the work. The authors attest that this work raises no ethical issues.

2 Background: L4S Signaling Meets the 5G RAN
When an internet content server sends a data segment to a client on an L4S-enabled network, any
congested L4S-enabled router on the forward path marks the appropriate ECN bit when its queuing
delay exceeds a sojourn time threshold 𝜏𝑠 (defaulting to one millisecond) [16, 69]. An L4S receiver
then sets the congestion experienced (CE) bit in the TCP header of the ACK, and the information
reaches the sender within a round-trip time, as shown in Fig. 1 (upper). An L4S sender treats the
CE feedback as a “lightly-pressed brake,” meaning the sender updates the slow start threshold:

ssthresh← (1 − 𝛼/2) · cwnd,
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where 𝛼 is an exponentially-weighted moving average of the fraction of acknowledged bytes with
the CE bit marked out of the total bytes receiver over the previous RTT (similar to DCTCP [5]).
However, classic TCP flows treat CE feedback as a packet loss, so potentially slow dramatically
[31], and thus are prone to starvation relative to L4S flows, and so L4S routers separate L4S and
classic flows into two different queues, ensuring the fair bandwidth share between them through a
dual queue coupled (DualPi2) structure [69]. In a toy topology with one server, one router, and one
client, running iperf3 with TCP Prague and CUBIC, Fig. 2(a) shows TCP Prague (L4S)’s low RTT
and line-rate throughput performance in this wired network thus the RLC buffer is not shown. The
CUBIC has an RTT around 20 ms, which is the default target for classic flows in the L4S router.

Contrast this with the same content server sending data to a mobile client on a 5G network. The
5G Core (5GC) passes it to the RAN. In the RAN’s CU, the Service Data Adaptation Protocol (SDAP)
layer maps the packet by its quality of service identifier to a Data Radio Bearer (DRB), a logical
channel that spans the 5G architecture from the 5GC all the way to the UE. The intervening Packet
Data Convergence Protocol (PDCP) and Radio Link Control (RLC) entities are instantiated once per
DRB. The PDCP assigns and records a sequence number for the packet, which is then known as
a Service Data Unit (SDU), so that the RLC in the DU can run an ARQ protocol to ensure (more)
reliable delivery over the wireless link. The SDU then moves to the DU where the RLC queues
and retransmits it as necessary. It then passes down to lower layers of the Distributed and Radio
Units as a Protocol Data Unit (PDU) where it is further (independently) reframed and retransmitted
as necessary. One or several DRBs and the RLC queues are maintained for each UE, resulting in
traffic isolation among and within UEs. The MAC layer in the base station schedules data from
RLC queues of each UE, and then the traffic shares the over-the-air physical channel. Key here is
the reframing and encapsulation of the datagram at the PDCP and lower layers, resulting in the
relevant RLC queue in the DU being hidden to Layers 3 and above. Furthermore, the RLC buffer
is designed to be deep for reliable delivery, while, on the contrary, it worsens the sojourn time.
Hence, the same CUBIC and L4S flows both experience large RLC queuing delays in a 5G network
(Fig. 2(b), lower), leading to high end-to-end RTT (Fig. 2(b), upper), thus impacting the performance
of interactive applications. Also, the latency breakdown in Fig. 10 shows that the sojourn time in
the RLC buffer makes up the majority portion of the one-way delay without L4Span. In contrast,
L4Span minimizes queuing delay (Fig. 10) while simultaneously maintaining throughput (Fig. 2(c)).

3 Related Work
L4S and 5GMany existing works discuss enabling L4S feedback mechanism in the 5G network
through simulation [19, 20, 63, 72], which can’t capture the resource allocation dynamics between
UEs’ transmissions, while L4Span observes the allocation outcome and predicts the sojourn time
passively. Brunello [19, 20] proposes to include the ECN feedback in the PDCP layer, but doesn’t
have a solution for the dominant classic flows [73], and L4Span proposes solutions for both types
of flow. Pan [63] and Son [72] conduct trace-driven evaluations, without real RAN dynamics,
unlike L4Span’s over-the-air implementation. DChannel [70, 71] guides flows to different physical
channels for performance gain, neglecting the impact of the internal queues, and L4Span aims
to minimize the internal queue occupancy and achieve full throughput utilization for each UE.
From the UE perspective, base station selection is explored to achieve performance gain [27] and
energy saving [37]. XRC [48] is a rate controller in the RAN, requiring customized end-points, while
L4Span optimizes for existing schemes. OutRAN[49] proposes to prioritize the short-lived flows
over the long-lived flows in the RLC queue, while L4Span keeps RLC queue occupancy low and both
types of flow benefit, as shown in our evaluation in Fig. 11. RAPID[28] designs a proxy between the
5G core and the content server to prevent RLC buffer overshooting, but RAPID is too far away from
the RAN and thus can’t adapt as the RAN’s changing throughput as L4Span does. TC-RAN[41, 42]
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implements the Linux queuing discipline, such as CoDel and ECN-CoDel, inside the RAN between
SDAP and PDCP layer, and uses a fixed threshold to drop or mark the packets. Evaluation results
show that TC-RAN underutilizes the RAN’s capacity while L4Span, adapting with the dequeue rate,
better utilizes the capacity and achieves low latency. Non-queue-building (NQB) [79] proposes a
low-latency architecture similar to L4S, but NQB doesn’t aim for full bandwidth utilization, and
L4Span can serve similarly. L4Span is the first design that enables congestion feedback for both
L4S and classic flows, and is evaluated with live RAN dynamics and various channel conditions.
Congestion Control. Sprout [80] employs a stochastic model to forecast the cellular queue
occupancy. Verus [88] uses a packet delay profile for congestion avoidance, and Copa [8] uses the
RTT measures to minimize the queue occupancy. CopaD [40] adapts to cellular networks with
parameter tuning. PBE-CC [83] utilizes the RAN telemetry information to regulate the sender, and
a similar design is adopted in piStream [81] and CLAW [82]. BBR [21] probes the bandwidth and
delay periodically, and BBRv2 and 3 [22] improve the procedure and take the ECN as feedback.
Venkat [7] analyzes the starvation in end-to-end congestion controls, while the RAN’s behavior
is one source of the non-congestive delay. Ferreira [30] proposes a reverse-engineering tool for
congestion control algorithms, which better enables middleboxes to assist end-to-end transport.
Separated in different RAN’s queues, flows have contentions for resource allocation partially based
on the backlogged data, not fully complying with the observations in the wide area network [18, 89].
Unlike a new congestion control algorithm that customizes the logic of both sender and receiver,
L4Span in the last-mile hop (5G network) improves the latency performance for existing algorithms.
In-network Design. XCP [45] uses a control theory framework to achieve high utilization and
low queuing delay. ABC [36] repurposes the ECN field in the IP header as "accelerate" or "brake"
command to adjust the sending rate of the sender, making it hard to fit into the L4S architecture.
TACK [55] reduces the frequency of ACK in wireless networks and improves throughput and RTT,
while L4Span relies on the ACKs for congestion notification. Zhuge [60] delays and/or modifies the
ACK in the Wi-Fi for a more timely feedback to the sender, which inspires our RAN short-circuiting
design. Octopus [23] drops the packets actively for delay reduction, but requires modifications on
the client, server, and RAN, incurring a heavier burden than L4Span. SMUFF [77] aims to achieve
the line rate in Wi-Fi direct by filling the router’s buffer with the optimal amount of data, and
L4Span aims for low latency on top of it. Sidekick [87] provides in-wireless-network feedback
for QUIC flow, incurring new out-of-band feedback for the sender, while L4Span leverages only
in-band feedback in the existing ACK packets, thus it is more bandwidth efficient.

4 Design
We first summarize L4Span’s architecture (§4.1), then drill down into its packet marking strategy
(§4.2), sojourn time prediction (§4.3), and feedback short-circuiting mechanism (§4.4). We develop
our design in the context of the O-RAN 7.2x split [65] as it is the dominant design direction in 5G
currently, and our design generalizes to other O-RAN splits.

4.1 L4Span Functionality
As shown in Fig. 3, we situate most of L4Span’s functionality in modules inside the RAN CU, above
the SDAP and PDCP layers that constitute the CU’s per-UE state. A new queue feedback path
directs downlink data delivery status messages from the RLC in the DU. Three classes of events
trigger L4Span’s functions: 1) receiving a downlink datagram from the 5GC, 2) receiving RAN
feedback, and 3) receiving an uplink ACK—pseudocode can be found in Appendix A.
Receiving a downlink datagram: when it receives a datagram from the 5GC, L4Span creates a
mapping between the five-tuple [59], and a UE and Data Radio Bearer (DRB) tuple—this separates
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entities mark where queues build up inside the 5G network. L4Span reuses the existing feedback in the RAN.
L4S+/L4S- denotes a router with/without L4S functionality; RU, MAC and PHY layers are not shown.

classic and L4S flows by their ECN field (01 for L4S ECN flows, 10 for classic ECN flows), as
introduced above in Section 2. The five-tuple contains the source and destination IP addresses,
ports, and transport protocol, and is unique for each flow and UE. The (UE, DRB) tuple indexes
L4Span’s packet profile table (§4.3.1) for egress rate prediction (§4.3.3) and marking decisions.
Receiving RAN queue feedback: as shown in Fig. 3, L4Span receives downlink RLC data delivery
events over the F1-U interface (§4.3.1), a mandatory 3GPP API from the RLC to the PDCP entity.
Upon receiving the feedback, the L4Span layer uses this data to update the corresponding packets’
status in the packet profile table and make a marking decision (§4.2).
Receiving an uplink ACK: L4Span only operates on the uplink packet if the feedback short-
circuiting is possible (TCP, see §4.4). L4Span first reverse-maps the ACK to the correct DRB , and
then updates the packet’s relevant fields based on the marking decision.

4.2 Marking Strategy
ECN marks inform L4S and classic senders of congestion, so they can change their behavior. But as
observed above (§2), different senders react to ECN markings differently, and so we mark packets
with different strategies, in analogy to DualPi2 Active Queue Management (AQM) [69]. In an L4Span
5G network, a DRB may serve L4S flows only (§4.2.1), classic flows only (§4.2.2), or a mix of both
(§4.2.3). L4Span classifies the above scenarios by checking the ECN fields, and work with each.

4.2.1 L4S-Only DRB. Here L4Span drives the queuing delay low by marking aggressively, because
the L4S sender treats the CE ECN feedback as a “slightly-pressed brake,” resuming additive increase
immediately upon receiving non-CE ACKs after the congestion window (cwnd) is cut (§2). Hence
an L4S sender’s cwnd changes frequently and converges to a small saw-tooth around the optimal
operation point [17].Marking algorithm:Given a predicted egress rate 𝑟𝑒 and its error distribution
𝑒𝑟𝑒 (§4.3 describes how to make the estimates), L4Span marks the packet with probability 𝑝L4S, the
likelihood the actual egress rate satisfies the sojourn time threshold 𝜏𝑠 , given 𝑁queue queued bytes:

𝑝L4S = 𝑃

{
𝑟𝑒 ≥

𝑁queue

𝜏thr

���� 𝑟𝑒 , 𝑒𝑟𝑒 } = 𝑃

{
𝑒𝑟𝑒 ≤

𝑁queue

𝜏thr
− 𝑟𝑒

}
, (1)

0 2 4 6 8 10 12 14 16 18 20
Est. Sojourn Time (ms)

0.0

0.5

1.0

p L
4S

êre = 0.1

êre = 0.5

where 𝑒𝑟𝑒 ∼ N(0, 𝑒2𝑟𝑒 ) and 𝑒𝑟𝑒 is the standard deviation of the egress rate over the latest estima-
tion window. In a wired network, DualPi2 estimates the sojourn time by subtracting the ingress
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Fig. 4— L4Span’s behavior on L4S and classic flows with wireless channel variations.

timestamps of the queue head packet and tail packet, and marks all packets when the sojourn
time exceeds one millisecond. However, the 5G network has a volatile egress rate, making such
estimation infeasible. Instead, L4Span uses a varying distribution to calculate mark probability
(Eq. 1): if the egress rate is volatile (𝑒𝑟𝑒 ↑), the distribution has a flatter edge at 𝜏thr to avoid potential
under-utilization. If the egress rate is stable (𝑒𝑟𝑒 ↓), the distribution has a sharper edge to pursue
low latency more aggressively. If the egress rate is invariant (𝑒𝑟𝑒 = 0), L4Span’s marking strategy
reduces to the DualPi2 strategy. We set a sojourn time threshold of 10 milliseconds (see §6.3 for
justification), as the 5G MAC layer requires an adequately filled buffer for resource scheduling.

The behavior of L4Span, the L4S sender, and the RAN is shown in the running example of Fig. 4
(left). We define a bytes threshold 𝑁𝐿 = 𝑟𝑒 · 𝜏𝑠 in the figure, equivalent to the sojourn time threshold.
At the first RTT, the RLC buffer builds up to the threshold, as the L4S sender paces packets in
additive increase (AI) [51]. In the second RTT, the buffered bytes trigger the marking in Eq. 1, then
the L4S sender observes CE signal and conducts a cwnd multiplicative decrease (MD). Immediately
after the MD, the sender returns to AI, until the next CE signal. In the stable channel, L4Span and
the sender maintain a small sawtooth pattern around the delay threshold.
In the seventh RTT, the wireless channel sharply degrades, worsening the egress rate. L4Span

detects this and adjusts its mark threshold in the subsequent RTT, forcing the sender to once more
cut cwnd. Here, the RLC buffered bytes may drop to zero, and the UE would experience a brief
throughput under-utilization, but this is promptly remedied by the sender immediately returning
to AI and refilling the RLC buffer. In the 13th RTT, the channel recovers, and increased throughput
drains buffers causing potential under-utilization until the L4S sender uses AI to refill the buffer.

4.2.2 Classic-Only DRB. Unlike L4S, a classic sender (e.g. CUBIC, Reno) treats the congestion feed-
back the same way as the packet loss, and reacts by cutting its slow start threshold multiplicatively.
With this in mind, we should not aim for a shallow queue for the classic flows, as the TCP endpoint
would frequently receive the CE feedback, cut its slow start threshold and suffers from severe
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starvation [16]. The design goal is to prevent the well-documented buffer bloat [33, 38, 43] and in
the meantime, maintain a suitable amount of bytes in the buffer to avoid underutilization.

To prevent buffer bloat, L4Span marks the packets with the probability that matches the average
ingress rate with the RAN egress rate to balance the buffer size. The TCP throughput is modeled
as 𝑟classic ≈ MSS · 𝐾/(RTT√𝑝classic), where 𝐾 =

1+𝛽
2

√︃
2

1−𝛽2 and 𝛽 is the MD parameter [62] (0.5 for
Reno [64]). L4Span predicts the RAN egress rate 𝑟𝑒 from its packet profile table (see §4.3.3). To
complete the equation, L4Span estimates the initial 𝑅𝑇𝑇

∗
using the interval between the first two

forward TCP packets (SYN and the subsequent ACK) of each flow. In the further operation, we add
𝑅𝑇𝑇

∗
with the predicted sojourn time 𝜏𝑟s over the last coherence time window (§4.3.3) as the RTT

estimates 𝑅𝑇𝑇 = 𝑅𝑇𝑇
∗ + 𝜏𝑟𝑠 . The marking probability is calculated as:

𝑟𝑒 =
MSS · 𝐾

𝑅𝑇𝑇
√
𝑝classic

→ 𝑝classic =

(
MSS · 𝐾
𝑅𝑇𝑇𝑟𝑒

)2
. (2)

𝑅𝑇𝑇 is an overestimation of the RTT, as the UE’s DRB may have other backlogged data when the
handshake happens. Instead of harming the performance, the slightly lower 𝑝classic, resulting in a
higher ingress rate, helps to build an adequate RLC buffer size and prevent under-utilization (see
the evaluation in §6.3.1). If 𝑅𝑇𝑇 is not available, e.g. UDP flows, we use 2𝜏𝑟s as the RTT estimates.
Our running example continues in Fig. 4 (right) with the behavior of L4Span, a classic sender,

and the RAN. Initially, the classic sender sends the packet burst to the RAN, and increases its cwnd
with the CUBIC function. The marking probability, calculated from Eq. (2), remains low. When
receiving a congestion signal marked by L4Span, the classic sender cuts its cwnd and pauses the AI
for one RTT, during which the RAN dequeues the packets. As the channel turns bad, the dequeue
rate decreases, resulting in a higher marking probability to regulate the ingress rate. In this period,
the sender receives relatively more congestion signals, thus the RAN can drain the queue. As the
channel recovers, and the L4Span’s’s marking probability returns to a lower value, and the sender
returns to AI. Compared with the L4S flow’s short and more volatile marking behavior, the marking
behavior for a classic flow spans a longer time and operates at relatively small values, where the
differences are due to the distinct behaviors of the classic and L4S senders.

4.2.3 L4S-Classic Shared DRB. To achieve optimal performance, best practice is to keep L4S and
classic flows in separate DRBs of each UE. However, some lower-end UEs do not support multi-DRB
configuration, and a new marking scheme is needed, as both types of flows experience performance
drop (in RTT or throughput) in such a scenario if unattended (see §6.2.6). To achieve good resource
utilization, we keep the classic packet marking probability (𝑝classic). The L4S flow’s throughput
(MBytes/s) is inversely proportional to the packet mark rate (𝑟L4S) [17, 68]: 𝑟L4S ≈ 2MSS/(RTT ·𝑝L4S),
and the 𝑟classic is discussed above. To balance two types of flows’ throughputs, we mark the L4S
flow with a coupled probability 𝑝L4S = 𝛼

√
𝑝classic, where 𝛼 is the solution of 𝑟𝐿4𝑆 = 𝑟classic equation,

assuming an equal RTT. Here, L4S and classic flows compete fairly in one UE’s DRB, while the
fairness among different UEs is achieved by the MAC scheduler, working orthogonally with L4Span.

4.3 RANQueue Occupancy Prediction
Here we introduce the design details of L4Span. To begin with, L4Span re-purposes the existing
F1-U messages in the base station. L4Span utilizes the F1-U feedback messages from the RLC to
the PDCP entity (§4.3.1) to estimate the dequeue rate, as well as the estimation errors based on a
shadow table described next (§4.3.2). Then, L4Span uses the egress rate estimations to predict the
sojourn time (§4.3.3), and based on the estimations, makes the marking decisions.
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4.3.1 F1-U Feedback Loop. The RAN’s behavior and the feedback information vary with the RLC
mode configured in each DRB: there are two RLC modes for user data delivery: RLC Acknowledged
Mode AM and RLC Unacknowledged Mode (UM), where the latter omits retransmissions and the
retransmission queue, and doesn’t provide delivery time feedback. The purpose of the F1-U feedback
loop is to expose the RAN’s congestion queue to the upper L4Span layer. There are three types
of 3GPP-standard [4] F1-U messages: downlink user data, downlink data delivery status, and
assistance information. To make our design as general as possible, we use only the mandatory
fields of the downlink data delivery message: the highest transmitted PDCP sequence number (SN)
and the highest delivered PDCP SN. The RLC triggers a timestamped feedback message when it
transmits the PDCP SDU down to the MAC/PHY, and when it receives an RLC ACK that indicates
SDU delivery from the UE in RLC AM. As we explain next, L4Span handles both AM and UM.

4.3.2 Packet Profile Table: Timekeeping. The L4Span packet profile table tracks packets’ progress
through the RLC in order to predict queue occupancy. Figure 5 provides a running example, packets
with sequence numbers 1, 2 and 3 go through different procedures with a timestamp on each:
1) Entry to CU-UP L4Span layer, recording of ingress timestamps 𝑇 I

1,𝑇
I
2 , and 𝑇

I
3 .

2)MAC transmits Packets 1 and 2, RLC layer reports the status to PDCP and L4Span, with recorded
transmission timestamps (𝑇 T

1 ,𝑇
T
2 ).

3) RAN delivers Packet 1 to UE, which sends an RLC acknowledgment. RLC sends the highest
delivered sequence number and delivery timestamp 𝑇D

1 to the PDCP and L4Span.
From the packet profile table, we calculate the actual queuing delay of each packet by subtracting
the transmitted time and the ingress time (i.e., 𝑇 T

1 −𝑇 I
1 and 𝑇

T
2 −𝑇 I

2 ), and retransmission delay (i.e.,
𝑇D
1 −𝑇 T

1 ), if the DRB is configured with RLC AM. To ensure L4Span works in both AM and UM, we
estimate queue status with the intersection of the feedback information for both RLC modes—the
packet transmit times in the feedback information. However, the calculated queuing delay reflects
the status of the previously transmitted packets (Packets 1 and 2 in Fig. 5), while ideally we want
to estimate the queuing delay of the current standing queue (Packets 3 and later in Fig. 5), and set
the feedback accordingly. To do that, we need to predict the RAN egress rate.

4.3.3 Sojourn Time Prediction and Error Estimation. To predict the RLC queue’s packet sojourn time,
L4Span monitors and predicts the queue egress rate within a short time window. Upon receiving
RAN feedback, L4Span remembers the highest transmitted packet sequence number, say 𝑘 , then
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calculates the current egress rate of the DRB using a window with time duration 𝜏𝑐 :

𝑟𝑇
𝑘
=

(∑︁
𝑖∈{𝑖 |𝑇𝑇

𝑘
−𝜏𝑐<𝑇𝑇

𝑖
≤𝑇𝑇

𝑘
}
𝑁𝑖

)
/𝜏𝑐 , (3)

where 𝑁𝑖 is the packet size and 𝑇 T
𝑖 is the transmission time of the 𝑖th packet. We choose 𝜏𝑐 to be

half a pre-set channel coherence time (the time that the channel response is the same), where the 𝜏𝑐
is measured by [78] in a driving scenario, and can cover most of the daily usage scenario. Then we
use another 𝜏𝑐 -long window to calculate the average egress rate, as the smoothed egress rate:

𝑟𝑒 =

(∑︁
𝑖∈{𝑖 |𝑇𝑇

𝑘
−𝜏𝑐<𝑇𝑇

𝑖
≤𝑇𝑇

𝑘
}
𝑟𝑇𝑖

)
/
��{𝑖 |𝑇𝑇

𝑘
− 𝜏𝑐 < 𝑇𝑇

𝑖 ≤ 𝑇𝑇
𝑘
}
�� , (4)

where |·| denotes the number of elements. In this way, all the packets used for egress rate estimation
are transmitted within 2𝜏𝑐 , the channel coherence time, during which the wireless channel is
considered stable. With 𝑁𝑞𝑢𝑒𝑢𝑒 =

∑
𝑖∈{𝑖 |𝑇 𝐼

𝑖
>𝑇 𝐼

𝑘
} 𝑁𝑖 , the estimated sojourn time thus becomes:

𝜏𝑟s =
𝑁𝑞𝑢𝑒𝑢𝑒

𝑟𝑒
. (5)

L4Span uses the estimated sojourn time for RTT estimation and marking decision making (§4.2).
Here we analyze the cost of egress rate estimation errors if the generic DualPi2 strategy is

adopted. Fig. 6 shows a snapshot of the queue, where the 𝑟𝑒 is the dequeue rate and 𝑅𝑇𝑝 is the
round-trip propagation time. Ideally, DualPi2 operates on the line 1○ and 4○ in the figure, achieving
sojourn time and throughput targets. However, when it over-estimates the egress rate (𝑟𝑒 > 𝑟𝑒 , line
2○ and 5○ in the figure), causing an under-estimated sojourn time and further more queued bytes,
the RTT would increase by 𝑅𝑇𝑝 (𝑟𝑒−𝑟𝑒 )

𝑟𝑒
, marked by the blue star on the line 1○. While if the egress

rate is under-estimated (𝑟 ′𝑒 > 𝑟𝑒 , line 3○ and 6○ in the figure), resulting in overaggressive markings,
the throughput would decrease by (𝑅𝑇𝑝+𝜏𝑠 ) (𝑟𝑒−𝑟

′
𝑒 )

𝑅𝑇𝑝
, marked by the orange star on the line 4○.

To adapt to the volatile wireless throughput, L4Span considers the egress rate estimation errors for
the marking strategy. Based on our evaluation in §6.3, the egress rate estimation error (𝑒𝑟𝑒 = 𝑟𝑒 − 𝑟𝑒 )
follows the Gaussian distribution with a near-zero mean. Given 𝑟𝑒 ≈ E(𝑟𝑒 ) over the latest estimation
window, 𝑒𝑟𝑒 has the similar variation as 𝑟𝑒 . We estimate 𝑒𝑟 ’s standard deviation using the groundtruth
dequeue rate’s standard deviation within the last 𝜏𝑐 -long window (𝑒𝑟𝑒 ), getting 𝑒𝑟𝑒 ∼ 𝑁 (0, 𝑒2𝑟𝑒 ). We
take the sojourn time and egress rate error estimations for the marking decision (§4.2). ML based
forecasters [11, 34, 66] could potentially improve the prediction accuracy, but are unsuitable for
microsecond-level packet and RAN feedback processing in L4Span (see §6.3.3).

4.4 Feedback Short-circuiting
In the L4S architecture [14], the sender relies on feedback from the client, experiencing the entire
RTT, but the 5G network delays packet delivery further, as shown in Fig. 7.1 To prevent RAN jitter
and delays from delaying the feedback, we propose to short-circuit the RAN by modifying the
uplink feedback (Fig. 7), inspired by prior work [60]. L4S adopts several feedback format variations;
L4Span supports all of them: 1) AccECN [15] uses ECN-Echo and option field in the ACK TCP
header (Prague [17] or BBRv2 [22]), 2) classic ECN uses [31] ECN-Echo in the ACK’s TCP header
as feedback [9], and 3) data inside the data payload (SCReAM [29] or QUIC [35]).
Short-circuiting the RAN. L4Span first classifies between AccECN and classic ECN, by checking
the TCP header’s option field, used by AccECN. If AccECN protocol is adopted, the feedback bits in
1The MAC/PHY and RLC ARQ delay the transport block by eight ms [76, 83, 86], and up to 100 ms [2, 85], respectively, and
the scheduling delay approaches tens of milliseconds as UE numbers increase (§6.2).
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the TCP header contain the number of packets marked as CE and bytes marked as CE, ECT-1, and
ECT-0 [15]. Upon marking, L4Span tentatively marks a downlink packet by storing the number
of packets and bytes of all three types. Instead of changing the packet’s ECN field, L4Span uses
the latest ratio to split the ACKed bytes, and updates the ACK’s TCP header accordingly [15]. For
classic ECN, L4Span keeps marking the ECN-Echo field in the ACK header upon decision, until the
CWR flag is set in the downlink packets [59]. L4Span serves as a "bookkeeper" for the client, and
short-circuits the RAN’s complex jitters, resulting in a better performance in RTT (§6.2.5).
Fallback to Mark Downlink Packet. For the UDP flow, the feedback could be encrypted (QUIC
[53]) or presented in customized format (SCReAM [29, 44] and UDP Prague [51]), L4Span fallbacks
to mark downlink packets’ IP ECN field. Furthermore, L4Span can also be configured to drop
packets selectively instead of ECN marking to provide feedback to non-ECN flow senders/

5 Implementation
We implement L4Span on top of srsRAN [74] with approximately 2,000 lines of C++ code (excluding
reused code). The L4Span layer is in the CU-UP and inside the UE context, meaning that during the
PDU session creation for each UE upon its initial connection, the RAN creates one L4Span entity
and connects L4Span to the GTP-U interfance and lower SDAP layer. When a packet is sent from
the 5G core to the CU, L4Span checks the packet’s ECN field to identify its type. Then, L4Span
makes the marking decision with the information from the lower layers and the estimated egress
rate and sojourn time. In the meantime, L4Span keeps a copy of the QoS flow and DRB mapping
table, which will be used for packet profile table creation and feedback short-circuiting. For the
feedback information, we reuse the RAN’s message by spawning a dedicated thread in the F1-U
interface to call L4Span’s feedback handler function upon receiving messages from the RLC/DU,
which we use to predict the queue occupancy and make marking decisions. For the coherence
time 𝜏𝑐 , we use a measurement in [78] with a 3.5 GHz base station and a moving UE with 70 km/h
speed (𝜏𝑐 = 24.9 ms), covering most of the sub-6 GHz scenarios (evaluated in §6.3), as the higher
the center frequency and the faster the UE, the shorter the coherence time. As for the downlink
packet processing, L4Span marks the packets on its ECN field if using downlink marking (for UDP
or QUIC flows), then it recalculates the CRC checksum on its IP header. For the uplink feedback
short-circuiting, L4Span updates the TCP header’s Nonce, CWR, and ECN-Echo and TCP options
for the AccECN feedback. L4Span then calculates and updates the TCP checksum.

6 Evaluation
We proceed top-down, first introducing our overall methodology, then evaluating it with end-to-end
congestion control performance improvements, and we evaluate L4Span’s in micro-benchmarks.
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6.1 Methodology
We evaluate L4Span in the open-source srsRAN 5G network and Open5GS [61] as the 5G Core,
as shown in Fig. 8. We run srsCU and srsDU on a desktop machine, where L4Span is integrated
into the CU. The cell is on a TDD band n78 with 30kHz subcarrier spacing, and the cell’s center
frequency is 3750 MHz with 20 MHz bandwidth, yielding a 40 Mbits/s capacity. We use two types
of UEs to generate traffic in the RAN – 1) commercial 5G phones, and 2) a production grade test
equipment – Amarisoft UE emulator, which can emulate up to 64 UE over-the-air and emulate
different channels. Senders are two Microsoft Azure instances with ping times of 38ms and 106ms.

To begin with, we evaluate the following congestion control schemes’ performance in L4Span:
• Prague [17]. TCP Prague is implemented for the L4S architecture, where the client sends the
feedback using TCP header fields with AccECN [15].
• CUBIC [39]. CUBIC sender cuts its congestion window to a fixed ratio upon loss or CE. In
steady state, it increases its congestion window following the cubic function.
• BBRv2 [22]. BBRv2 includes the DCTCP (or L4S)-like congestion window adjustments upon
receiving the AccECN signal. It proactively probes the bandwidth and RTT.

We also evaluate BBR [21] and Reno [64] with L4Span. Please check the Appendix B for their result.
Furthermore, We evaluate two application-level algorithms to analyze L4Span’s performance on

interactive applications:
• SCReAM [29, 44]. SCReAM is a congestion control algorithm designed for webRTC [12] over
UDP and supports L4S congestion feedback. The receiver reads the number of CE bytes and
feedback through RTP feedback.
• UDP Prague [51]. UDP Prague is designed for interactive application in the L4S architecture,
where the receiver sends the feedback to the sender in the UDP payload.

6.2 Transport Layer Performance
In this evaluation, we evaluate: L4Span’s performance impact on 1) widely deployed TCP and 2)
interactive video congestion control algorithms; 3) L4Span’s impact on the fairness of the RAN, 4)
the short-circuiting design’s effectiveness, and 5) when L4S and classic flows share the same DRB.

6.2.1 Performance Impacts on TCP Congestion Control. Here we evaluate L4Span’s performance
impact on congestion control algorithms, including Prague (L4S), BBRv2 (L4S), and CUBIC (classic).
We connect 16 and 64 UEs into the RAN through the Amarisoft UE emulator through the over-
the-air channel, and all the UEs are doing concurrent TCP downloading through iperf3, making
the RAN extremely congested. We emulate different channels with the UE emulator, including
static, pedestrian- and vehicular-speed channels, and combine the latter two as mobile. We compare
different RLC layer queue size settings, including the default srsRAN RLC queue length of 16384
and 256 SDUs. Fig. 9 shows the evaluation result. Across all scenarios, L4Span can massively reduce
the one-way delay and maintain a high throughput level. In the default RLC queue setting and
with the server of 38ms RTT, L4Span reduces the median one-way delay of Prague by 98.87% and
97.93% in static and mobile channels for 16 UEs with a median throughput drop of less than 1%. As
for BBRv2, L4Span reduces the RTT by 52.48% and 52.27% in static and mobile channels, with the
cost of 9.8% and 0.08% throughput drop. For CUBIC flow, L4Span can also reduce its one-way delay
by 98.85% and 97.11% in static and mobile channels with little median throughput drop. Similar
trends can be found in 64 UEs and different RLC queue settings, as well as the 106ms RTT server,
shown in Fig. 9(e) to Fig. 9(h). One thing to note is that 256 RLC queue reduces the one-way delay
but is less effective than L4Span, as packet drops and retransmissions happen more frequently.
Here we break down Prague’s one-way delay, including propagation, scheduling, and queuing
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Fig. 9— L4Span improves the performance of various congestion control algorithms in reducing RTT while
maintaining throughput, under severely congested RAN and different channel conditions (S: Static, M: Mobile).
+ indicates L4Span is deployed. Senders are Azure instances with uncongested RAN ping time marked in the
caption. Center point: median, box edges: 25th- and 75th-percentile, and whiskers: 10th- and 90th-percentile.
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Fig. 12— Comparison between L4Span and TC-RAN(S: Static, M: Mobile, East: 38ms RTT, West: 106ms RTT).

delays. The propagation delay is calculated from the NTP-synchronized server and the 5G core’s
packet timestamp. We breaks the sojourn time into queuing and scheduling delay. The scheduling
delay is the wait time for a packet in the queue head for the next transmission opportunity, collected
from the MAC layer log. Queuing delay is the time between when a packet enters the queue and it
reaches the head of the queue, calculated by subtracting the scheduling delay from the sojourn time.
We compare two scheduling methods – round robin and proportional fair, with 16 and 64 UEs in
the RAN. Fig. 10 shows the result of this evaluation, L4Span works with both scheduling schemes.
Applications host both long-lived flows (LLF) and short-lived flows (SLF) are prevalent, such as

video on-demand, and web browsing, where the LLF delivers the content and SLF delivers the
interactions. Here we evaluate the impact of L4Span on such applications, by running two TCP
flows within one commercial UE – one LLF and one SLF, where the SLF’s size is 14 kilo bytes. Fig. 11
shows the result; L4Span can reduce the finish time of the SLF, while keeping the LLF’s throughput.
For TCP Prague, L4Span reduces the SLF’s finish time by 94.59%, with 10% of throughput drop for
the LLF. Similar performance improvements can be found in BBRv2 and CUBIC flows.

6.2.2 Comparison with Baseline. Here we compare L4Span with the baseline method TC-RAN[42],
by connecting one UE into both RANs. We use the same RAN configurations (cell bandwidth,
MCS table, etc.) in both L4Span and TC-RAN for a fair comparison. We evaluate the performance
of TCP Prague and CUBIC, with default ECN-CoDel and CoDel configuration in the TC-RAN,
respectively, and deploy senders in the two Azure instances mentioned above (west with 106ms
RTT and east with 38ms RTT). Fig. 12 shows the result of this evaluation. L4Span achieves a similar
delay performance with TCP Prague as TC-RAN, but achieves better throughput utilization with
improvements of 148% for the static channel and 6% for the mobile channel, as shown in Fig. 12(a).
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Fig. 13— SCREAM and UDP Prague’s performance with L4Span under different channel conditions.
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Fig. 14— L4Span’s impact on the TCP throughput fairness among different flows.

Note that there is a latency spike in the TC-RAN, which happens at the beginning of the session
due to the longer propagation delay, while L4Span mitigates this with the RAN short-circuiting
design. For CUBIC, L4Span achieves a better channel utilization as it tries to align the throughput
of the sender and RAN, while TC-RAN uses a fixed threshold in CoDel, leading to under-utilization.

6.2.3 Interactive Application’s Congestion Control. Here we evaluate the performance SCReAM and
UDP Prague, designed for interactive video applications. Both algorithms support L4S over UDP,
thus L4Span disables the RAN short-circuiting. We connect 8 Amarisoft UEs into the network to
perform concurrent downlink transmission from a local server, under different channel conditions.
Fig. 13 shows the results, where L4Span improves the the RTT performance of both schemes under
all channel conditions. Specifically, L4Span reduces the RTT of UPD Prague in static, pedestrian
and vehicular channel by 76.33%, 38.04%, and 44.83%, while slightly reduces its throughput by 5.64%,
8.25%, and 17.74%. For SCReAM, L4Span reduces its RTT by 12.60%, 11.20%, and 38.44% in static,
pedestrian and vehicular channel conditions, with a little bit higher throughput variations.

6.2.4 Fairness. We evaluate L4Span’s impact on the TCP fairness between different UEs in the
network. In this evaluation, we connect three commercial UEs into the 5G network with starting
time of 0, 10 and 20 seconds and ending time of 60, 50, 40 seconds, and each UE carries one TCP
flow. As a result, three Prague flows can maintain their fair share rate as shown in Fig. 14(a), and
the Prague flow with higher RTT would need more time to converge to the fair share throughput
as shown in Fig. 14(b). When sharing the RAN with another UE using buffer filling TCP congestion
control algorithm (CUBIC), the L4Span maintains the balance among three UEs Fig. 14(c). BBRv2,
also treated as L4S flow, takes longer to recover, as shown in Fig. 14(d). When three flows share the
RAN simultaneously between 20 and 40s, the MAC scheduler determines the resource allocation
based on each UE’s configurations and channel conditions, resulting in slight different throughputs.
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Fig. 15— L4Span’s performance comparison when it uses feedback
short-circuiting (SC in the figure) or not for L4S and classic flows.
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6.2.5 Feedback Short-circuiting. Here we evaluate the effectiveness of L4Span’s short-circuiting
design. During this evaluation, one UE is connected to the 5G network with L4S Prague or classic
CUBIC flow and communicates with a local server to rule out other delay impacts. Fig. 15 shows
the results of this evaluation. L4Span can achieve a lower RTT for both Prague (28.52 ms v.s. 33.87
ms) and CUBIC (75.27 ms v.s. 85.42 ms) flows on average and on 99.9 percentile tail for Prague
(52.97 ms v.s. 179.34 ms) and CUBIC (160.42 ms v.s. 190.53 ms) with short-circuits, as shown in
Fig. 15(a). Also, the short-circuiting doesn’t affect the throughput performance much (Fig. 15(b)).

6.2.6 DRB shared by L4S and classic flows. L4Span has a separate marking strategy when both
flows share the same DRB (§4.2.3). During this evaluation, we connect one phone into the 5G
network and start two flows – one for Prague and one for CUBIC. Fig. 16 shows the result of
this evaluation, where the y-axis is the ratio of L4S in RTT (𝑅𝑇𝑇𝐿4𝑆/(𝑅𝑇𝑇𝐿4𝑆 + 𝑅𝑇𝑇𝐶𝑙𝑎𝑠𝑠𝑖𝑐 )) and
throughput (𝑟𝐿4𝑠/(𝑟𝐿4𝑠 + 𝑟𝐶𝑙𝑎𝑠𝑠𝑖𝑐 )). We evaluate four marking methods, as listed in the x-axis labels.
Firstly, we keep the original marking strategy as they don’t share the queue ("Original" in Fig. 16),
where the L4S flow starves. Secondly, we mark both flows with the L4S strategy in §4.2.1 ("L4S" in
Fig. 16), where the classic flow is starved with a throughput ratio of round 25%, as the classic flow
slows it sending more than the L4S flow. Thirdly, we mark both flows with the classic strategy in
§4.2.2 ("Classic" in Fig. 16), causing a larger throughput variation. The marking strategy in §4.2.3
("L4Span in Fig. 16") performs the best – fair share capacity and the smallest variations.

6.3 Microbenchmarks
In this evaluation, we 1) illustrate the Dualpi2’s marking strategy is unsuitable for wireless networks,
2) validate the parameter selections in our design, and 3) evaluate L4Span’s processing time.

6.3.1 Marking Behavior. We compare L4Span against 1) Dualpi2 [69], and 2) DualPi2 + 10ms
threshold to show the marking strategy in the wired network can’t be applied directly to the
wireless scenario. We reimplement DualPi2 to replace L4Span and evaluate TCP Prague and BBRv2.
DualPi2’s sojourn time calculation can’t capture the wireless channel variations, resulting in severe
under-utilization – 73% and 28% lower throughput with thresholds of 1 and 10 ms, respectively.

We evaluate the queue length of the L4S flow and classic flow with L4Span to demonstrate that
the queue occupancy rarely reaches zero, leading to underutilization. Fig. 17 shows the result,
where in all the scenarios, the classic flow RLC queue length doesn’t fall to zero. And the L4S flow
maintains a low queue occupancy and achieves ultra-low queuing delay.

6.3.2 Parameter Selection. To verify our window selection – half of the pre-set coherence time
(24.9 ms), for egress rate estimation, we leverage a telemetry tool called NR-Scope [76] to collect
the DCIs in the two commercial base stations (a 2.5GHz TDD cell and a 600 MHz FDD cell) near
our lab. We count the period during which the MCS index’s deviation is within 5 as an estimation
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Fig. 17— RLC queue CDF (S: Static, M: Mobile).
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Fig. 19— Impact of 𝜏𝑠 on performance.
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Client Types srsRAN (idle) srsRAN+L4Span (idle) srsRAN (busy) srsRAN+L4Span (busy)
CPU Usage 2.54% 4.44% 13.44% 14.96%

Memory Usage 6.93% 6.94% 7.28% 7.30%
Table 1— L4Span’s CPU (13700K) and memory (64GB) usage compared with the original srsRAN.

of channel stable period, and include periods shorter than 1 s in the statistics. Fig. 18 shows the
measurement result, and the dashed vertical line marks our window sizes, where most of the time
(>90%) the channel stable period is higher than our window size2.

To keep a low queuing delay for the L4S flow, L4Span utilizes a sojourn time threshold (𝜏𝑠 ), which
is 10 millisecond in the paper. Here we evaluate how 𝜏𝑠 affects the performance of Prague. Fig. 19
shows the result of this evaluation with each point showing the mean value. As the queuing delay
threshold grows higher, the throughput reaches a good level at 10𝑚𝑠 threshold with a low RTT.

To evaluate the RLC layer egress estimation accuracy, we connect 16 UEs into the network with
three channel conditions and compare the RLC layer log with the estimated egress rate at L4Span.
Fig. 20 shows the measurements, and most of the time the RLC layer egress rate errors at L4Span
are near 0% across three channel conditions.

6.3.3 System Performance. Here we evaluate the processing time of the three events of L4Span (§4),
on RAN feedback, on downlink and uplink packets. We run srsRAN with L4Span on a 24-Core i7-
13700K machine with 64 GB memory, connect 64 UEs to the RAN, and collect the processing time of
L4Spanwhen all the UEs are downloading simultaneously. Fig. 21 shows the results, L4Span finishes
its job within 2 microseconds for uplink packet and feedback information processing, and above
50% of the processing is done within 1 microsecond. For the downlink packet processing, L4Span
finishes 97% of its process in less than 2 microseconds, and in rare cases, it takes 4 microseconds.
We evaluate the CPU and memory usage of L4Span by comparing it with the original srsRAN

on the same machine and in two different operation states: 1) idle – no user, and 2) busy – 64 UEs
downloading concurrently. Table 1 shows the result of this evaluation, and L4Span incurs less than
2% of more CPU and less than 0.02% of more memory usage compared with the original srsRAN.
2One thing to note is that MCS depends on both channel condition and buffered bytes, not fully reflecting the channel
conditions. For example, if the buffered bytes are low, the RAN would use a low MCS even if the channel condition is great.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 25. Publication date: December 2025.



25:18 Haoran Wan and Kyle Jamieson

7 Discussion
Compatibility with other RAN technologies. L4Span is compatible with other RAN lower or
upper layer technologies, such as carrier aggregation (CA) [54, 84], MIMO, slicing [6, 24, 25], and
handover. CA and MIMO only change the workflow of MAC and PHY layers, captured by L4Span
egress rate prediction. Slicing maps users into different UE context groups [10], while L4Span
works with the physical resources allocated to the client. Upon handover, the buffered bytes are
sent to a new RAN, and the markings are already done based on the old estimates. The negative
effect won’t last long as the buffer is kept low by L4Span, we leave the evaluation as future work.
QUIC Transport Protocols. QUIC flow is another prevalent Internet traffic type, equipped with
end-to-end data encryption. To harness the advantage of L4S architecture, Google implements the
Prague [35] and BBRv2 as the underlying congestion control schemes, where the receiver reads the
clear IP ECN field marked by middleboxes and bounces back the feedback. L4Span can improve
QUIC flows’ performance by marking on their outer IP headers, similar to UDP flows (§6.2.3).
5G uplink. The design in this paper focuses on downlink; we leave the complementary uplink
design to future work. In the uplink, the buffer is inside each client [46], and different strategies,
such as pacing the packet to follow the RAN’s transmission patterns, can be adopted.
Alternate Designs. Here we list design possibilities other than the foregoing for the placement
of L4Span’s and arguments against their adoption: 1) 5G Core/UPF: There is no DRB state stored
inside the 5G Core/UPF, so the gNB has to send that state and the queue status, to the UPF, which
incurs extra communication delay, lengthening the feedback loop. 2) SDAP (CU-UP): While we
could implement marking in the SDAP layer, L4Span operates in the TCP/IP layer, while the SDAP
is its own layer (with an associated header) in the 5G protocol stack, so layering principles favor
this design less. 3) PDCP (CU-UP) and DU: While each PDCP entity only has visibility into its own
packet queue, 5G may route an uplink feedback packet via a different DRB than the downlink packet
that elicited it. Hence, this design choice precludes our proposed feedback short-circuiting design
(§4.4). IP header compression in the PDCP layer [3] precludes packet marking in lower layers. 4)
O-RAN RICs: RICs incur extra networking delay [65], real-time RICs only work in DU [50, 52].
Malicious Behaviors. In the 5G scenario, if a sender or a middlebox mingles the ECN field or
adversarially ignores the ECN feedback, the damage to the network is minimal. UEs’ queues are
isolated (§2), and filling one queue only affects one specific UE’s traffic in one DRB, while traffic in
other DRBs and UEs still get their fair share of resources guaranteed by the MAC scheduler.
Incentives for ISPs. Deploying L4S in the 5G and wired networks improves the latency perfor-
mance, and benefits the ISPs’ competitiveness. Furthermore, L4S functionality only needs to be
deployed at the bottleneck of the data path with a controllable cost. Thus, many applications (Apple
FaceTime[75], Google QUIC[35]) and ISPs (Comcast[26], T-Mobile[67]) are already rolling out L4S.

8 Conclusion
In this paper, we have proposed L4Span, the first network architecture proposal that spans L4S
signaling over 5G networks in a practical and high performance implementation. Our experimental
evaluation demonstrates that L4Span can optimize the performance of both L4S and classic flows
in different applications and transport layer technologies. Furthermore, L4Span’s design covers the
many possible 5G configurations, making it practical for deployment today.
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A L4Span Layer Pseudo Code
Here, we list the pseudo code of L4Span triggered by three events: on receiving a downlink IP
packet (Fig. 22), on receiving the RAN feedback (Fig. 23, top) and on receiving an uplink packet
(Fig. 23, down).

1 void on_dl_pkt(buffer pkt , qos_flow_id qfi) {

2 /* Map the QFI to DRB */

3 auto drb_id = qfi_to_drb(qfi);

4 /* Save the five -tuple mapping to DRB */

5 auto five_tuple = extract_five_tuple(pkt);

6 five_tuple_to_drb[five_tuple] = drb_id;

7 /* Read the ECN bits and update DRB flows */

8 auto flow_type = classify_flow(pkt);

9 update_drb_flows(drb_id , flow_type);

10 /* Save to packet profile queue */

11 add_to_profile_queue(drb_id , pkt);

12 /* Perform marking if it's a UDP packet */

13 if (is_udp(pkt))

14 mark_pkt(drb_id , pkt);

15 /* Pass the packet to lower SDAP layer */

16 to_sdap(pkt , qfi);

17 }

Fig. 22— The L4Span layer’s processing upon
receiving a downlink IP packet.

1 void on_ran_feedback(uint32_t txed_sn , uint32_t

dlvred_sn , drb_id_t drb_id , timestamp ts) {

2 /* Update the pkt profile queue */

3 update_pkt_prof(txed_sn , dlvred_sn , drb_id , ts);

4 /* Standing packets queuing delay prediction */

5 auto stand_pkt_qdelay = qdelay_predict ();

6 /* Update marking decision */

7 update_drb_mark_state(drb_id , stand_pkt_qdelay);

8 }

1 void on_ul_packet(buffer pkt) {

2 if(is_tcp_ack(pkt)) {

3 /* Extracts the ACK's downlink five -tuple */

4 auto five_tuple = extract_ack_five_tuple(ack);

5 /* Reverse map the five -tuple to DRB id */

6 auto drb_id = five_tuple_to_drb[five_tuple ];

7 /* Mark ECN bits based on the mark state */

8 mark_pkt(drb_id , pkt);

9 }

10 to_upf(pkt); /* Pass the packet to the core UPF */

11 }

Fig. 23— The L4Span’s processing on receiving the
RAN feedback (top), and the uplink packet (down).

B BBR and Reno’s Evaluation Result with L4Span
Here we present the evaluation result of BBR and Reno:
• BBR [21]. BBR sender periodically switches between bottleneck bandwidth and propagation
delay probing state, and doesn’t react much to the packet loss or CE feedback.
• Reno [64]. TCP Reno cuts its congestion window to half upon packet loss and adds one onto its
congestion window size per RTT in steady state.

L4Span can decrease the RTT of Reno by 97.61% and 97.12% in static and mobile channels, yielding a
higher variation in throughput. For other channels and different UE numbers, L4Span can constantly
improve the performance of RTT by more than 90% and incurs very little performance drop in
throughput. BBR, doesn’t react much to the ECN or packet loss, yields higher variations in RTT
and throughput with L4S, while the median values stay the same most of the time.
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Fig. 24— L4Span improves the performance of various congestion control algorithms in terms of reducing
RTT while maintaining throughput, under severely congested RAN and different channel conditions (S: Static,
M: Mobile). Bold font and adding symbol (+) indicate L4Span is deployed. Senders are Azure instances with
uncongested RAN ping timemarked in the caption. Center point: median, box edges: 25th- and 75th-percentile,
and whiskers: 10th- and 90th-percentile.
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